Inhibition of SARS-CoV replication cycle by small interference RNAs silencing specific SARS proteins, 7a/7b, 3a/3b and S
- PMID:17112601
- PMCID: PMC7114101
- DOI: 10.1016/j.antiviral.2006.10.008
Inhibition of SARS-CoV replication cycle by small interference RNAs silencing specific SARS proteins, 7a/7b, 3a/3b and S
Abstract
The severe acute respiratory syndrome coronavirus (SARS CoV) genome has 14 potential open reading frames (ORFs). The first ORF is translated from the full-length genomic mRNA while the remaining ORFs are translated from eight subgeomic RNAs (sgRNAs). In this study, we designed small interference RNAs (siRNAs) targeting sgRNA 2, 3 and 7 and tested their efficiency and specificity in silencing the protein translated from the targeted sgRNA. Our results demonstrated that siRNA 7 could inhibit sgRNA 7, which showed 19/19 nucleotides (nt) matching, and sgRNA 8, which showed 18/19 nt matching; but, it did not inhibit the full-length genomic mRNA which showed 17/19 nt matching. Overall, each of the siRNAs can inhibit the targeted sgRNA without affecting the full-length genomic mRNA or the other sgRNAs that showed mismatch of two or more nt. Thus, siRNA could be designed so as to knockdown the expression of viral protein(s) from a targeted sgRNA during viral infection, thereby allowing the contribution of individual viral proteins to viral infection to be delineated. When Vero E6 cells expressing siRNA 2, 3 or 7 were infected with SARS-CoV, a significant reduction in the yield of progeny virus was observed. Indirect immunofluorescence assays showed that in the infected cells expressing each of the siRNAs, there was aspecific silencing of S, 3a and 7a, respectively, but the expression of nucleocapsid protein was not affected. Thus, our data suggests that the accessory proteins, i.e. 3a and 7a, could play an important role during the replication cycle of the SARS-CoV.
Figures




Similar articles
- siRNA targeting the leader sequence of SARS-CoV inhibits virus replication.Li T, Zhang Y, Fu L, Yu C, Li X, Li Y, Zhang X, Rong Z, Wang Y, Ning H, Liang R, Chen W, Babiuk LA, Chang Z.Li T, et al.Gene Ther. 2005 May;12(9):751-61. doi: 10.1038/sj.gt.3302479.Gene Ther. 2005.PMID:15772689Free PMC article.
- Inhibition of replication and infection of severe acute respiratory syndrome-associated coronavirus with plasmid-mediated interference RNA.Ni B, Shi X, Li Y, Gao W, Wang X, Wu Y.Ni B, et al.Antivir Ther. 2005;10(4):527-33.Antivir Ther. 2005.PMID:16038478
- Role of Severe Acute Respiratory Syndrome Coronavirus Viroporins E, 3a, and 8a in Replication and Pathogenesis.Castaño-Rodriguez C, Honrubia JM, Gutiérrez-Álvarez J, DeDiego ML, Nieto-Torres JL, Jimenez-Guardeño JM, Regla-Nava JA, Fernandez-Delgado R, Verdia-Báguena C, Queralt-Martín M, Kochan G, Perlman S, Aguilella VM, Sola I, Enjuanes L.Castaño-Rodriguez C, et al.mBio. 2018 May 22;9(3):e02325-17. doi: 10.1128/mBio.02325-17.mBio. 2018.PMID:29789363Free PMC article.
- SARS-CoV replication and pathogenesis in an in vitro model of the human conducting airway epithelium.Sims AC, Burkett SE, Yount B, Pickles RJ.Sims AC, et al.Virus Res. 2008 Apr;133(1):33-44. doi: 10.1016/j.virusres.2007.03.013. Epub 2007 Apr 23.Virus Res. 2008.PMID:17451829Free PMC article.Review.
- Understanding the accessory viral proteins unique to the severe acute respiratory syndrome (SARS) coronavirus.Tan YJ, Lim SG, Hong W.Tan YJ, et al.Antiviral Res. 2006 Nov;72(2):78-88. doi: 10.1016/j.antiviral.2006.05.010. Epub 2006 Jun 6.Antiviral Res. 2006.PMID:16820226Free PMC article.Review.
Cited by
- Transient inhibition of foot-and-mouth disease virus replication by siRNAs silencing VP1 protein coding region.Lv K, Guo Y, Zhang Y, Wang K, Li K, Zhu Y, Sun S.Lv K, et al.Res Vet Sci. 2009 Jun;86(3):443-52. doi: 10.1016/j.rvsc.2008.10.011. Epub 2008 Dec 4.Res Vet Sci. 2009.PMID:19062053Free PMC article.
- Coronavirus virulence genes with main focus on SARS-CoV envelope gene.DeDiego ML, Nieto-Torres JL, Jimenez-Guardeño JM, Regla-Nava JA, Castaño-Rodriguez C, Fernandez-Delgado R, Usera F, Enjuanes L.DeDiego ML, et al.Virus Res. 2014 Dec 19;194:124-37. doi: 10.1016/j.virusres.2014.07.024. Epub 2014 Aug 2.Virus Res. 2014.PMID:25093995Free PMC article.Review.
- PEDV ORF3 encodes an ion channel protein and regulates virus production.Wang K, Lu W, Chen J, Xie S, Shi H, Hsu H, Yu W, Xu K, Bian C, Fischer WB, Schwarz W, Feng L, Sun B.Wang K, et al.FEBS Lett. 2012 Feb 17;586(4):384-91. doi: 10.1016/j.febslet.2012.01.005. Epub 2012 Jan 11.FEBS Lett. 2012.PMID:22245155Free PMC article.
- Recent developments in anti-severe acute respiratory syndrome coronavirus chemotherapy.Barnard DL, Kumaki Y.Barnard DL, et al.Future Virol. 2011 May;6(5):615-631. doi: 10.2217/fvl.11.33.Future Virol. 2011.PMID:21765859Free PMC article.
- RNA interference targeting virion core protein ORF095 inhibits Goatpox virus replication in Vero cells.Zhao Z, Wu G, Zhu X, Yan X, Dou Y, Li J, Zhu H, Zhang Q, Cai X.Zhao Z, et al.Virol J. 2012 Feb 17;9:48. doi: 10.1186/1743-422X-9-48.Virol J. 2012.PMID:22340205Free PMC article.
References
- Chan W.S., Wu C., Chow S.C., Cheung T., To K.F., Leung W.K., Chan P.K., Lee K.C., Ng H.K., Au D.M., Lo A.W. Coronaviral hypothetical and structural proteins were found in the intestinal surface enterocytes and pneumocytes of severe acute respiratory syndrome (SARS) Mod. Pathol. 2005;18:1432–1439. - PMC - PubMed
- Chen Y.Y., Shuang B., Tan Y.X., Meng M.J., Han P., Mo X.N., Song Q.S., Qiu X.Y., Luo X., Gan Q.N., Zhang X., Zheng Y., Liu S.A., Wang X.N., Zhong N.S., Ma D.L. The protein X4 of severe acute respiratory syndrome-associated coronavirus is expressed on both virus-infected cells and lung tissue of severe acute respiratory syndrome patients and inhibits growth of Balb/c 3T3 cell line. Chin. Med. J. 2005;118:267–274. - PubMed
MeSH terms
Substances
Related information
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous