The ability of the mesocortical dopamine system to operate in distinct temporal modes
- PMID:17086392
- PMCID: PMC5509053
- DOI: 10.1007/s00213-006-0527-8
The ability of the mesocortical dopamine system to operate in distinct temporal modes
Abstract
Background: This review discusses evidence that cells in the mesocortical dopamine (DA) system influence information processing in target areas across three distinct temporal domains.
Discussions: Phasic bursting of midbrain DA neurons may provide temporally precise information about the mismatch between expected and actual rewards (prediction errors) that has been hypothesized to serve as a learning signal in efferent regions. However, because DA acts as a relatively slow modulator of cortical neurotransmission, it is unclear whether DA can indeed act to precisely transmit prediction errors to prefrontal cortex (PFC). In light of recent physiological and anatomical evidence, we propose that corelease of glutamate from DA and/or non-DA neurons in the VTA could serve to transmit this temporally precise signal. In contrast, DA acts in a protracted manner to provide spatially and temporally diffuse modulation of PFC pyramidal neurons and interneurons. This modulation occurs first via a relatively rapid depolarization of fast-spiking interneurons that acts on the order of seconds. This is followed by a more protracted modulation of a variety of other ionic currents on timescales of minutes to hours, which may bias the manner in which cortical networks process information. However, the prolonged actions of DA may be curtailed by counteracting influences, which likely include opposing actions at D1 and D2-like receptors that have been shown to be time- and concentration-dependent. In this way, the mesocortical DA system optimizes the characteristics of glutamate, GABA, and DA neurotransmission both within the midbrain and cortex to communicate temporally precise information and to modulate network activity patterns on prolonged timescales.
Figures


Similar articles
- Mesocortical dopamine neurons operate in distinct temporal domains using multimodal signaling.Lavin A, Nogueira L, Lapish CC, Wightman RM, Phillips PE, Seamans JK.Lavin A, et al.J Neurosci. 2005 May 18;25(20):5013-23. doi: 10.1523/JNEUROSCI.0557-05.2005.J Neurosci. 2005.PMID:15901782Free PMC article.
- Glucocorticoid receptors in the prefrontal cortex regulate dopamine efflux to stress via descending glutamatergic feedback to the ventral tegmental area.Butts KA, Phillips AG.Butts KA, et al.Int J Neuropsychopharmacol. 2013 Sep;16(8):1799-807. doi: 10.1017/S1461145713000187. Epub 2013 Apr 16.Int J Neuropsychopharmacol. 2013.PMID:23590841
- Prefrontal Dopamine D1 and D2 Receptors Regulate Dissociable Aspects of Decision Making via Distinct Ventral Striatal and Amygdalar Circuits.Jenni NL, Larkin JD, Floresco SB.Jenni NL, et al.J Neurosci. 2017 Jun 28;37(26):6200-6213. doi: 10.1523/JNEUROSCI.0030-17.2017. Epub 2017 May 25.J Neurosci. 2017.PMID:28546312Free PMC article.
- Developing a neuronal model for the pathophysiology of schizophrenia based on the nature of electrophysiological actions of dopamine in the prefrontal cortex.Yang CR, Seamans JK, Gorelova N.Yang CR, et al.Neuropsychopharmacology. 1999 Aug;21(2):161-94. doi: 10.1016/S0893-133X(98)00112-2.Neuropsychopharmacology. 1999.PMID:10432466Review.
- The principal features and mechanisms of dopamine modulation in the prefrontal cortex.Seamans JK, Yang CR.Seamans JK, et al.Prog Neurobiol. 2004 Sep;74(1):1-58. doi: 10.1016/j.pneurobio.2004.05.006.Prog Neurobiol. 2004.PMID:15381316Review.
Cited by
- Distinct prestimulus and poststimulus activation of VTA neurons correlates with stimulus detection.Totah NK, Kim Y, Moghaddam B.Totah NK, et al.J Neurophysiol. 2013 Jul;110(1):75-85. doi: 10.1152/jn.00784.2012. Epub 2013 Apr 3.J Neurophysiol. 2013.PMID:23554430Free PMC article.
- Dopamine, behavioral economics, and effort.Salamone JD, Correa M, Farrar AM, Nunes EJ, Pardo M.Salamone JD, et al.Front Behav Neurosci. 2009 Sep 7;3:13. doi: 10.3389/neuro.08.013.2009. eCollection 2009.Front Behav Neurosci. 2009.PMID:19826615Free PMC article.
- Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits.Salamone JD, Correa M, Farrar A, Mingote SM.Salamone JD, et al.Psychopharmacology (Berl). 2007 Apr;191(3):461-82. doi: 10.1007/s00213-006-0668-9. Epub 2007 Jan 16.Psychopharmacology (Berl). 2007.PMID:17225164Review.
- Alterations in neurotransmitter co-release in Parkinson's disease.Barcomb K, Ford CP.Barcomb K, et al.Exp Neurol. 2023 Dec;370:114562. doi: 10.1016/j.expneurol.2023.114562. Epub 2023 Oct 5.Exp Neurol. 2023.PMID:37802381Free PMC article.Review.
- Voltage-sensitive dye imaging of primary motor cortex activity produced by ventral tegmental area stimulation.Kunori N, Kajiwara R, Takashima I.Kunori N, et al.J Neurosci. 2014 Jun 25;34(26):8894-903. doi: 10.1523/JNEUROSCI.5286-13.2014.J Neurosci. 2014.PMID:24966388Free PMC article.
References
- Au-Young SM, Shen H, Yang CR. Medial prefrontal cortical output neurons to the ventral tegmental area (VTA). and their responses to burst-patterned stimulation of the VTA: neuroanatomical and in vivo electrophysiological analyses. Synapse. 1999 Dec 15;34(4):245–255. - PubMed
- Bekkers JM. Neurophysiology: are autapses prodigal synapses? Curr Biol. 1998;8:R52–R55. - PubMed
- Berger B, Gaspar P, Verney C. Dopaminergic innervation of the cerebral cortex: unexpected differences between rodents and primates. Trends Neurosci. 1991;14:21–27. - PubMed
Publication types
MeSH terms
Substances
Related information
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous