Quenching of superoxide radicals by green fluorescent protein
- PMID:17023114
- PMCID: PMC1764454
- DOI: 10.1016/j.bbagen.2006.08.014
Quenching of superoxide radicals by green fluorescent protein
Abstract
Green fluorescent proteins (GFP) are widely used in vivo molecular markers. These proteins are particularly resistant, and maintain function, under a variety of cellular conditions such as pH extremes and elevated temperatures. Green fluorescent proteins are also abundant in several groups of marine invertebrates including reef-forming corals. While molecular oxygen is required for the post-translational maturation of the protein, mature GFPs are found in corals where hyperoxia and reactive oxygen species (ROS) occur due to the photosynthetic activity of algal symbionts. In vitro spin trapping electron paramagnetic resonance and spectrophotometric assays of superoxide dismutase (SOD)-like enzyme activity show that wild type GFP from the hydromedusa, Aequorea victoria, quenches superoxide radicals (O2*-)) and exhibits SOD-like activity by competing with cytochrome c for reaction with O2*-. When exposed to high amounts of O2*- the SOD-like activity and protein structure of GFP are altered without significant changes to the fluorescent properties of the protein. Because of the distribution of fluorescent proteins in both the epithelial and gastrodermal cells of reef-forming corals we propose that GFP, and possibly other fluorescent proteins, can provide supplementary antioxidant protection.
Figures





Similar articles
- Chromophore of an Enhanced Green Fluorescent Protein Can Play a Photoprotective Role Due to Photobleaching.Krasowska J, Pierzchała K, Bzowska A, Forró L, Sienkiewicz A, Wielgus-Kutrowska B.Krasowska J, et al.Int J Mol Sci. 2021 Aug 9;22(16):8565. doi: 10.3390/ijms22168565.Int J Mol Sci. 2021.PMID:34445269Free PMC article.
- Green fluorescent protein regulation in the coral Acropora yongei during photoacclimation.Roth MS, Latz MI, Goericke R, Deheyn DD.Roth MS, et al.J Exp Biol. 2010 Nov 1;213(Pt 21):3644-55. doi: 10.1242/jeb.040881.J Exp Biol. 2010.PMID:20952612
- The molecular properties and applications of Anthozoa fluorescent proteins and chromoproteins.Verkhusha VV, Lukyanov KA.Verkhusha VV, et al.Nat Biotechnol. 2004 Mar;22(3):289-96. doi: 10.1038/nbt943.Nat Biotechnol. 2004.PMID:14990950Review.
- Ultrafast proton shuttling in Psammocora cyan fluorescent protein.Kennis JT, van Stokkum IH, Peterson DS, Pandit A, Wachter RM.Kennis JT, et al.J Phys Chem B. 2013 Sep 26;117(38):11134-43. doi: 10.1021/jp401114e. Epub 2013 Apr 19.J Phys Chem B. 2013.PMID:23534404
- Green fluorescent protein-like proteins in reef Anthozoa animals.Miyawaki A.Miyawaki A.Cell Struct Funct. 2002 Oct;27(5):343-7. doi: 10.1247/csf.27.343.Cell Struct Funct. 2002.PMID:12502888Review.
Cited by
- Life history changes in coral fluorescence and the effects of light intensity on larval physiology and settlement in Seriatopora hystrix.Roth MS, Fan TY, Deheyn DD.Roth MS, et al.PLoS One. 2013;8(3):e59476. doi: 10.1371/journal.pone.0059476. Epub 2013 Mar 27.PLoS One. 2013.PMID:23544072Free PMC article.
- Coexistence of nonfluorescent chromoproteins and fluorescent proteins in massivePorites spp. corals manifesting a pink pigmentation response.Suzuki T, Casareto BE, Yucharoen M, Dohra H, Suzuki Y.Suzuki T, et al.Front Physiol. 2024 Jun 17;15:1339907. doi: 10.3389/fphys.2024.1339907. eCollection 2024.Front Physiol. 2024.PMID:38952870Free PMC article.
- Extracellular production and degradation of superoxide in the coral Stylophora pistillata and cultured Symbiodinium.Saragosti E, Tchernov D, Katsir A, Shaked Y.Saragosti E, et al.PLoS One. 2010 Sep 14;5(9):e12508. doi: 10.1371/journal.pone.0012508.PLoS One. 2010.PMID:20856857Free PMC article.
- The evolution of genes encoding for green fluorescent proteins: insights from cephalochordates (amphioxus).Yue JX, Holland ND, Holland LZ, Deheyn DD.Yue JX, et al.Sci Rep. 2016 Jun 17;6:28350. doi: 10.1038/srep28350.Sci Rep. 2016.PMID:27311567Free PMC article.
- Novel internal regions of fluorescent proteins undergo divergent evolutionary patterns.Gruber DF, DeSalle R, Lienau EK, Tchernov D, Pieribone VA, Kao HT.Gruber DF, et al.Mol Biol Evol. 2009 Dec;26(12):2841-8. doi: 10.1093/molbev/msp194. Epub 2009 Sep 21.Mol Biol Evol. 2009.PMID:19770223Free PMC article.
References
- Shimomura O, Johnson FH, Saiga Y. Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol. 1962;59:223–239. - PubMed
- Johnson FH, Shimomura O, Saiga Y, Gershman LC, Reynolds GT, Waters JR. Quantum efficiency of Cybridina luminescences, with a note on that of Aequorea. J Cell Comp Physiol. 1962;60:85–103.
- Tsein RY. The green fluorescent protein. Ann Rev Biochem. 1998;67:509–544. - PubMed
- Matz MV, Fradkov AF, Labas YA, Savitsky AP, Zaraisky AG, Markelov ML, Lukyanov SA. Fluorescent proteins from nonbioluminescent Anthozoa species. Nat Biotechnol. 1999;17:969–973. - PubMed
- Dove SG, Hoegh-Guldberg O, Ranganathan S. Major colour patterns of reefbuilding corals are due to a family of GFP-like proteins. Coral Reefs. 2001;19:197–204.
Publication types
MeSH terms
Substances
Related information
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources