Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Nature Publishing Group full text link Nature Publishing Group
Full text links

Actions

Share

Review
.2006 Aug 7;25(34):4675-82.
doi: 10.1038/sj.onc.1209594.

Succinate dehydrogenase and fumarate hydratase: linking mitochondrial dysfunction and cancer

Affiliations
Review

Succinate dehydrogenase and fumarate hydratase: linking mitochondrial dysfunction and cancer

A King et al. Oncogene..

Abstract

The phenomenon of enhanced glycolysis in tumours has been acknowledged for decades, but biochemical evidence to explain it is only just beginning to emerge. A significant hint as to the triggers and advantages of enhanced glycolysis in tumours was supplied by the recent discovery that succinate dehydrogenase (SDH) and fumarate hydratase (FH) are tumour suppressors and which associated, for the first time, mitochondrial enzymes and their dysfunction with tumorigenesis. Further steps forward showed that the substrates of SDH and FH, succinate and fumarate, respectively, can mediate a 'metabolic signalling' pathway. Succinate or fumarate, which accumulate in mitochondria owing to the inactivation of SDH or FH, leak out to the cytosol, where they inhibit a family of prolyl hydroxylase enzymes (PHDs). Depending on the PHD inhibited, two newly recognized pathways that support tumour maintenance may ensue: affected cells become resistant to certain apoptotic signals and/or activate a pseudohypoxic response that enhances glycolysis and is conveyed by hypoxia-inducible factor.

PubMed Disclaimer

Similar articles

See all similar articles

Cited by

See all "Cited by" articles

Publication types

MeSH terms

Substances

Related information

LinkOut - more resources

Full text links
Nature Publishing Group full text link Nature Publishing Group
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp