Rewiring the severe acute respiratory syndrome coronavirus (SARS-CoV) transcription circuit: engineering a recombination-resistant genome
- PMID:16891412
- PMCID: PMC1531645
- DOI: 10.1073/pnas.0605438103
Rewiring the severe acute respiratory syndrome coronavirus (SARS-CoV) transcription circuit: engineering a recombination-resistant genome
Abstract
Live virus vaccines provide significant protection against many detrimental human and animal diseases, but reversion to virulence by mutation and recombination has reduced appeal. Using severe acute respiratory syndrome coronavirus as a model, we engineered a different transcription regulatory circuit and isolated recombinant viruses. The transcription network allowed for efficient expression of the viral transcripts and proteins, and the recombinant viruses replicated to WT levels. Recombinant genomes were then constructed that contained mixtures of the WT and mutant regulatory circuits, reflecting recombinant viruses that might occur in nature. Although viable viruses could readily be isolated from WT and recombinant genomes containing homogeneous transcription circuits, chimeras that contained mixed regulatory networks were invariantly lethal, because viable chimeric viruses were not isolated. Mechanistically, mixed regulatory circuits promoted inefficient subgenomic transcription from inappropriate start sites, resulting in truncated ORFs and effectively minimize viral structural protein expression. Engineering regulatory transcription circuits of intercommunicating alleles successfully introduces genetic traps into a viral genome that are lethal in RNA recombinant progeny viruses.
Conflict of interest statement
Conflict of interest statement: No conflicts declared.
Figures






Similar articles
- Reverse genetics with a full-length infectious cDNA of severe acute respiratory syndrome coronavirus.Yount B, Curtis KM, Fritz EA, Hensley LE, Jahrling PB, Prentice E, Denison MR, Geisbert TW, Baric RS.Yount B, et al.Proc Natl Acad Sci U S A. 2003 Oct 28;100(22):12995-3000. doi: 10.1073/pnas.1735582100. Epub 2003 Oct 20.Proc Natl Acad Sci U S A. 2003.PMID:14569023Free PMC article.
- Severe Acute Respiratory Syndrome (SARS) Coronavirus ORF8 Protein Is Acquired from SARS-Related Coronavirus from Greater Horseshoe Bats through Recombination.Lau SK, Feng Y, Chen H, Luk HK, Yang WH, Li KS, Zhang YZ, Huang Y, Song ZZ, Chow WN, Fan RY, Ahmed SS, Yeung HC, Lam CS, Cai JP, Wong SS, Chan JF, Yuen KY, Zhang HL, Woo PC.Lau SK, et al.J Virol. 2015 Oct;89(20):10532-47. doi: 10.1128/JVI.01048-15. Epub 2015 Aug 12.J Virol. 2015.PMID:26269185Free PMC article.
- Identification of novel subgenomic RNAs and noncanonical transcription initiation signals of severe acute respiratory syndrome coronavirus.Hussain S, Pan J, Chen Y, Yang Y, Xu J, Peng Y, Wu Y, Li Z, Zhu Y, Tien P, Guo D.Hussain S, et al.J Virol. 2005 May;79(9):5288-95. doi: 10.1128/JVI.79.9.5288-5295.2005.J Virol. 2005.PMID:15827143Free PMC article.
- Development of mouse hepatitis virus and SARS-CoV infectious cDNA constructs.Baric RS, Sims AC.Baric RS, et al.Curr Top Microbiol Immunol. 2005;287:229-52. doi: 10.1007/3-540-26765-4_8.Curr Top Microbiol Immunol. 2005.PMID:15609514Free PMC article.Review.
- Programmed ribosomal frameshifting in HIV-1 and the SARS-CoV.Brierley I, Dos Ramos FJ.Brierley I, et al.Virus Res. 2006 Jul;119(1):29-42. doi: 10.1016/j.virusres.2005.10.008. Epub 2005 Nov 28.Virus Res. 2006.PMID:16310880Free PMC article.Review.
Cited by
- Severe Acute Respiratory Syndrome Coronavirus (SARS, SARS CoV).McFee RB.McFee RB.Dis Mon. 2020 Sep;66(9):101062. doi: 10.1016/j.disamonth.2020.101062. Epub 2020 Jul 28.Dis Mon. 2020.PMID:32800504Free PMC article.Review.No abstract available.
- Molecular characteristic, evolution, and pathogenicity analysis of avian infectious bronchitis virus isolates associated with QX type in China.Lu Y, Zeng Y, Luo H, Qiao B, Meng Q, Dai Z, Chen N, Zhao L, Meng X, Zhang H, Xia J, Ping J.Lu Y, et al.Poult Sci. 2024 Dec;103(12):104256. doi: 10.1016/j.psj.2024.104256. Epub 2024 Aug 28.Poult Sci. 2024.PMID:39288718Free PMC article.
- Structures and functions of coronavirus replication-transcription complexes and their relevance for SARS-CoV-2 drug design.Malone B, Urakova N, Snijder EJ, Campbell EA.Malone B, et al.Nat Rev Mol Cell Biol. 2022 Jan;23(1):21-39. doi: 10.1038/s41580-021-00432-z. Epub 2021 Nov 25.Nat Rev Mol Cell Biol. 2022.PMID:34824452Free PMC article.Review.
- Developing Next-Generation Live Attenuated Vaccines for Porcine Epidemic Diarrhea Using Reverse Genetic Techniques.Yu R, Dong S, Chen B, Si F, Li C.Yu R, et al.Vaccines (Basel). 2024 May 19;12(5):557. doi: 10.3390/vaccines12050557.Vaccines (Basel). 2024.PMID:38793808Free PMC article.Review.
- Vaccine efficacy in senescent mice challenged with recombinant SARS-CoV bearing epidemic and zoonotic spike variants.Deming D, Sheahan T, Heise M, Yount B, Davis N, Sims A, Suthar M, Harkema J, Whitmore A, Pickles R, West A, Donaldson E, Curtis K, Johnston R, Baric R.Deming D, et al.PLoS Med. 2006 Dec;3(12):e525. doi: 10.1371/journal.pmed.0030525.PLoS Med. 2006.PMID:17194199Free PMC article.
References
- Kew O. M., Sutter R. W., de Gourville E. M., Dowdle W. R., Pallansch M. A. Annu. Rev. Microbiol. 2005;59:587–635. - PubMed
- Seligman S. J., Gould E. A. Lancet. 2004;363:2073–2075. - PubMed
- Guan Y., Zheng B. J., He Y. Q., Liu X. L., Xhuang Z. X., Cheung C. L., Luo S. W., Li P. H., Zhang L. J., Guan Y. J., et al. Science. 2003;302:276–278. - PubMed
- Li W., Shi Z., Yu M., Ren W., Smith C., Epstein J. H., Wang H., Crameri G., Hu Z., Zhang H., et al. Science. 2005;310:676–679. - PubMed
Publication types
MeSH terms
Related information
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous