Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Wiley full text link Wiley
Full text links

Actions

Share

.2006 Jun-Jul;20(6-7):628-33.
doi: 10.1002/bmc.677.

Alterations of plasma and cerebrospinal fluid glutamate levels in rats treated with the N-methyl-D-aspartate receptor antagonist, ketamine

Affiliations

Alterations of plasma and cerebrospinal fluid glutamate levels in rats treated with the N-methyl-D-aspartate receptor antagonist, ketamine

Masayuki Tomiya et al. Biomed Chromatogr.2006 Jun-Jul.

Abstract

It has been reported that the repeated administration of a sub-anesthetic dose of an N-methyl-D-aspartate receptor antagonist, ketamine, can produce an animal model of schizophrenia. Since no information is available on the alterations of the amino acid levels in ketamine-treated rats, we investigated the amino acid composition in the plasma and cerebrospinal fluid of rats that were repeatedly administered with ketamine for 5 consecutive days (30 mg/kg/day). The plasma and cerebrospinal fluid amino acid compositions in the fifth week after cessation of repeated ketamine administration were determined by highperformance liquid chromatography with fluorescence detection using a pre-column fluorescence reagent, i.e. 4-fluoro-7nitro-2,1,3-benzoxadiazole. Among the amino acids investigated in the present study, the level of plasma glutamic acid increased significantly (p < 0.05), while that of the cerebrospinal fluid glutamic acid decreased significantly in the ketamine-treated rats as compared with these levels in control rats injected with saline (p < 0.05, n = 7). These alterations in the glutamic acid level in the plasma and cerebrospinal fluid resemble those in schizophrenic patients, suggesting that ketamine-treated rats may be a useful model for performing research on the pathophysiology of schizophrenia.

Copyright 2006 John Wiley & Sons, Ltd.

PubMed Disclaimer

Similar articles

See all similar articles

Cited by

Publication types

MeSH terms

Substances

Related information

LinkOut - more resources

Full text links
Wiley full text link Wiley
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp