Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Atypon full text link Atypon
Full text links

Actions

.2006 Jun 23;98(12):1471-8.
doi: 10.1161/01.RES.0000226497.52052.2a. Epub 2006 May 11.

Induction of cardiogenesis in embryonic stem cells via downregulation of Notch1 signaling

Affiliations
Free article

Induction of cardiogenesis in embryonic stem cells via downregulation of Notch1 signaling

Mohamed Nemir et al. Circ Res..
Free article

Abstract

Embryonic stem cells represent an attractive source of cardiomyocytes for cell-replacement therapies. However, before embryonic stem cells can be successfully used for the treatment of cardiac diseases, the precise molecular mechanisms that underlie their cardiogenic differentiation must be identified. A network of intrinsic and extrinsic factors regulates embryonic stem cell self-renewal and differentiation into a variety of different cell lineages. Here, we show that Notch signaling takes place in some but not all embryonic stem cells and that the Notch pathway is shut down during the course of differentiation concomitantly with downregulation of Notch receptor and ligand expression. Moreover, gain- and loss-of-function experiments for Notch signaling components show that this pathway is a crucial regulator of cardiomyocyte differentiation within ES cells. Differentiation of ES cells into cardiomyocytes is favored by inactivation of the Notch1 receptor, whereas endogenous Notch signaling promotes differentiation of ES cells into the neuronal lineage. We conclude that Notch signaling influences the cell fate decision between mesodermal and the neuroectodermal cell fates during embryonic stem cell differentiation. These findings should help to optimize the production of specific cell types via modulation of the Notch pathways and, in particular, to improve the production of embryonic stem cell-derived cardiomyocytes.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources

Full text links
Atypon full text link Atypon
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp