Transcriptome analysis reveals mechanisms by which Lactococcus lactis acquires nisin resistance
- PMID:16641446
- PMCID: PMC1472215
- DOI: 10.1128/AAC.50.5.1753-1761.2006
Transcriptome analysis reveals mechanisms by which Lactococcus lactis acquires nisin resistance
Abstract
Nisin, a posttranslationally modified antimicrobial peptide produced by Lactococcus lactis, is widely used as a food preservative. Yet, the mechanisms leading to the development of nisin resistance in bacteria are poorly understood. We used whole-genome DNA microarrays of L. lactis IL1403 to identify the factors underlying acquired nisin resistance mechanisms. The transcriptomes of L. lactis IL1403 and L. lactis IL1403 Nis(r), which reached a 75-fold higher nisin resistance level, were compared. Differential expression was observed in genes encoding proteins that are involved in cell wall biosynthesis, energy metabolism, fatty acid and phospholipid metabolism, regulatory functions, and metal and/or peptide transport and binding. These results were further substantiated by showing that several knockout and overexpression mutants of these genes had strongly altered nisin resistance levels and that some knockout strains could no longer become resistant to the same level of nisin as that of the wild-type strain. The acquired nisin resistance mechanism in L. lactis is complex, involving various different mechanisms. The four major mechanisms are (i) preventing nisin from reaching the cytoplasmic membrane, (ii) reducing the acidity of the extracellular medium, thereby stimulating the binding of nisin to the cell wall, (iii) preventing the insertion of nisin into the membrane, and (iv) possibly transporting nisin across the membrane or extruding nisin out of the membrane.
Figures

Similar articles
- Increased D-alanylation of lipoteichoic acid and a thickened septum are main determinants in the nisin resistance mechanism of Lactococcus lactis.Kramer NE, Hasper HE, van den Bogaard PTC, Morath S, de Kruijff B, Hartung T, Smid EJ, Breukink E, Kok J, Kuipers OP.Kramer NE, et al.Microbiology (Reading). 2008 Jun;154(Pt 6):1755-1762. doi: 10.1099/mic.0.2007/015412-0.Microbiology (Reading). 2008.PMID:18524930
- Loss of IrpT function in Lactococcus lactis subsp. lactis N8 results in increased nisin resistance.Xuanyuan Z, Wu Z, Li R, Jiang D, Su J, Xu H, Bai Y, Zhang X, Saris PE, Qiao M.Xuanyuan Z, et al.Curr Microbiol. 2010 Oct;61(4):329-34. doi: 10.1007/s00284-010-9615-4. Epub 2010 Mar 6.Curr Microbiol. 2010.PMID:20213102
- Membrane-associated proteins encoded by the nisin gene cluster may function as a receptor for the lantibiotic carnocin UI49.Stoffels G, Guthmundsdóttir A, Abee T.Stoffels G, et al.Microbiology (Reading). 1994 Jun;140 ( Pt 6):1443-50. doi: 10.1099/00221287-140-6-1443.Microbiology (Reading). 1994.PMID:8081505
- Genetics of subtilin and nisin biosyntheses: biosynthesis of lantibiotics.Entian KD, de Vos WM.Entian KD, et al.Antonie Van Leeuwenhoek. 1996 Feb;69(2):109-17. doi: 10.1007/BF00399416.Antonie Van Leeuwenhoek. 1996.PMID:8775971Review.
- Nisin variants: What makes them different and unique?da Silva Oliveira W, Teixeira CRV, Mantovani HC, Dolabella SS, Jain S, Barbosa AAT.da Silva Oliveira W, et al.Peptides. 2024 Jul;177:171220. doi: 10.1016/j.peptides.2024.171220. Epub 2024 Apr 16.Peptides. 2024.PMID:38636811Review.
Cited by
- Gene-Trait Matching and Prevalence of Nisin Tolerance Systems inLactococus lactis.van Gijtenbeek LA, Eckhardt TH, Herrera-Domínguez L, Brockmann E, Jensen K, Geppel A, Nielsen KF, Vindeloev J, Neves AR, Oregaard G.van Gijtenbeek LA, et al.Front Bioeng Biotechnol. 2021 Mar 3;9:622835. doi: 10.3389/fbioe.2021.622835. eCollection 2021.Front Bioeng Biotechnol. 2021.PMID:33748081Free PMC article.
- New insights into the resistance mechanism for the BceAB-type transporter SaNsrFP.Gottstein J, Zaschke-Kriesche J, Unsleber S, Voitsekhovskaia I, Kulik A, Behrmann LV, Overbeck N, Stühler K, Stegmann E, Smits SHJ.Gottstein J, et al.Sci Rep. 2022 Mar 10;12(1):4232. doi: 10.1038/s41598-022-08095-2.Sci Rep. 2022.PMID:35273305Free PMC article.
- Antilisterial efficacy ofLactobacillus bacteriocins and organic acids on frankfurters. Impact on sensory characteristics.Castellano P, Peña N, Ibarreche MP, Carduza F, Soteras T, Vignolo G.Castellano P, et al.J Food Sci Technol. 2018 Feb;55(2):689-697. doi: 10.1007/s13197-017-2979-8. Epub 2017 Dec 4.J Food Sci Technol. 2018.PMID:29391633Free PMC article.
- Lactococcus lactis Resistance to Aureocin A53- and Enterocin L50-Like Bacteriocins and Membrane-Targeting Peptide Antibiotics Relies on the YsaCB-KinG-LlrG Four-Component System.Tymoszewska A, Ovchinnikov KV, Diep DB, Słodownik M, Maron E, Martínez B, Aleksandrzak-Piekarczyk T.Tymoszewska A, et al.Antimicrob Agents Chemother. 2021 Nov 17;65(12):e0092121. doi: 10.1128/AAC.00921-21. Epub 2021 Sep 13.Antimicrob Agents Chemother. 2021.PMID:34516250Free PMC article.
- Mutations Selected After Exposure to Bacteriocin Lcn972 Activate a Bce-Like Bacitracin Resistance Module inLactococcus lactis.Campelo AB, López-González MJ, Escobedo S, Janzen T, Neves AR, Rodríguez A, Martínez B.Campelo AB, et al.Front Microbiol. 2020 Aug 13;11:1805. doi: 10.3389/fmicb.2020.01805. eCollection 2020.Front Microbiol. 2020.PMID:32903467Free PMC article.
References
- Baldi, P., and A. D. Long. 2001. A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes. Bioinformatics 17:509-519. - PubMed
- Breukink, E., I. Wiedemann, C. van Kraaij, O. P. Kuipers, H.-G. Sahl, and B. de Kruijff. 1999. Use of the cell wall precursor lipid II by a pore-forming peptide antibiotic. Science 286:2361-2364. - PubMed
Publication types
MeSH terms
Substances
Related information
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases