Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Elsevier Science full text link Elsevier Science
Full text links

Actions

Share

Review
.2006 Jul;119(1):111-20.
doi: 10.1016/j.virusres.2005.10.013. Epub 2006 Apr 19.

Hijacking of the host-cell response and translational control during influenza virus infection

Affiliations
Review

Hijacking of the host-cell response and translational control during influenza virus infection

John C Kash et al. Virus Res.2006 Jul.

Abstract

Influenza virus is a major public health problem with annual deaths in the US of 36,000 with pandemic outbreaks, such as in 1918, resulting in deaths exceeding 20 million worldwide. Recently, there is much concern over the introduction of highly pathogenic avian influenza H5N1 viruses into the human population. Influenza virus has evolved complex translational control strategies that utilize cap-dependent translation initiation mechanisms and involve the recruitment of both viral and host-cell proteins to preferentially synthesize viral proteins and prevent activation of antiviral responses. Influenza virus is a member of the Orthomyxoviridae family of negative-stranded, segmented RNA viruses and represents a particularly attractive model system as viral replication strategies are closely intertwined with normal cellular processes including the host defense and stress pathways. In this chapter, we review the parallels between translational control in influenza virus infected cells and in stressed cells with a focus on selective translation of viral mRNAs and the antagonism of the dsRNA and host antiviral responses. Moreover, we will discuss how the use of genomic technologies such as DNA microarrays and high through-put proteomics can be used to gain new insights into the control of protein synthesis during viral infection and provide a near comprehensive view of virus-host interactions.

PubMed Disclaimer

Similar articles

See all similar articles

Cited by

See all "Cited by" articles

Publication types

MeSH terms

Substances

Related information

Grants and funding

LinkOut - more resources

Full text links
Elsevier Science full text link Elsevier Science
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp