Nature's green revolution: the remarkable evolutionary rise of C4 plants
- PMID:16553316
- PMCID: PMC1626541
- DOI: 10.1098/rstb.2005.1737
Nature's green revolution: the remarkable evolutionary rise of C4 plants
Abstract
Plants with the C4 photosynthetic pathway dominate today's tropical savannahs and grasslands, and account for some 30% of global terrestrial carbon fixation. Their success stems from a physiological CO2-concentrating pump, which leads to high photosynthetic efficiency in warm climates and low atmospheric CO2 concentrations. Remarkably, their dominance of tropical environments was achieved in only the past 10 million years (Myr), less than 3% of the time that terrestrial plants have existed on Earth. We critically review the proposal that declining atmospheric CO2 triggered this tropical revolution via its effects on the photosynthetic efficiency of leaves. Our synthesis of the latest geological evidence from South Asia and North America suggests that this emphasis is misplaced. Instead, we find important roles for regional climate change and fire in South Asia, but no obvious environmental trigger for C4 success in North America. CO2-starvation is implicated in the origins of C4 plants 25-32 Myr ago, raising the possibility that the pathway evolved under more extreme atmospheric conditions experienced 10 times earlier. However, our geochemical analyses provide no evidence of the C4 mechanism at this time, although possible ancestral components of the C4 pathway are identified in ancient plant lineages. We suggest that future research must redress the substantial imbalance between experimental investigations and analyses of the geological record.
Figures










Similar articles
- Photosynthetic diversity meets biodiversity: the C4 plant example.Sage RF, Stata M.Sage RF, et al.J Plant Physiol. 2015 Jan 1;172:104-19. doi: 10.1016/j.jplph.2014.07.024. Epub 2014 Sep 4.J Plant Physiol. 2015.PMID:25264020Review.
- The recurrent assembly of C4 photosynthesis, an evolutionary tale.Christin PA, Osborne CP.Christin PA, et al.Photosynth Res. 2013 Nov;117(1-3):163-75. doi: 10.1007/s11120-013-9852-z. Epub 2013 May 24.Photosynth Res. 2013.PMID:23703454Review.
- Kranz anatomy is not essential for terrestrial C4 plant photosynthesis.Voznesenskaya EV, Franceschi VR, Kiirats O, Freitag H, Edwards GE.Voznesenskaya EV, et al.Nature. 2001 Nov 29;414(6863):543-6. doi: 10.1038/35107073.Nature. 2001.PMID:11734854
- Evolution of the C4 photosynthetic pathway: events at the cellular and molecular levels.Ludwig M.Ludwig M.Photosynth Res. 2013 Nov;117(1-3):147-61. doi: 10.1007/s11120-013-9853-y. Epub 2013 May 25.Photosynth Res. 2013.PMID:23708978Review.
- Photorespiration connects C3 and C4 photosynthesis.Bräutigam A, Gowik U.Bräutigam A, et al.J Exp Bot. 2016 May;67(10):2953-62. doi: 10.1093/jxb/erw056. Epub 2016 Feb 22.J Exp Bot. 2016.PMID:26912798Review.
Cited by
- Developmental genetic mechanisms of C4 syndrome based on transcriptome analysis of C3 cotyledons and C4 assimilating shoots in Haloxylon ammodendron.Li Y, Ma X, Zhao J, Xu J, Shi J, Zhu XG, Zhao Y, Zhang H.Li Y, et al.PLoS One. 2015 Feb 2;10(2):e0117175. doi: 10.1371/journal.pone.0117175. eCollection 2015.PLoS One. 2015.PMID:25643361Free PMC article.
- Effects of "Reduced" and "Business-As-Usual" CO2 Emission Scenarios on the Algal Territories of the Damselfish Pomacentrus wardi (Pomacentridae).Bender D, Champ CM, Kline D, Diaz-Pulido G, Dove S.Bender D, et al.PLoS One. 2015 Jun 29;10(6):e0131442. doi: 10.1371/journal.pone.0131442. eCollection 2015.PLoS One. 2015.PMID:26121163Free PMC article.
- Climate-driven C4 plant distributions in China: divergence in C4 taxa.Wang R, Ma L.Wang R, et al.Sci Rep. 2016 Jun 15;6:27977. doi: 10.1038/srep27977.Sci Rep. 2016.PMID:27302686Free PMC article.
- The evolution of inorganic carbon concentrating mechanisms in photosynthesis.Raven JA, Cockell CS, De La Rocha CL.Raven JA, et al.Philos Trans R Soc Lond B Biol Sci. 2008 Aug 27;363(1504):2641-50. doi: 10.1098/rstb.2008.0020.Philos Trans R Soc Lond B Biol Sci. 2008.PMID:18487130Free PMC article.Review.
- Acclimation of Biochemical and Diffusive Components of Photosynthesis in Rice, Wheat, and Maize to Heat and Water Deficit: Implications for Modeling Photosynthesis.Perdomo JA, Carmo-Silva E, Hermida-Carrera C, Flexas J, Galmés J.Perdomo JA, et al.Front Plant Sci. 2016 Nov 22;7:1719. doi: 10.3389/fpls.2016.01719. eCollection 2016.Front Plant Sci. 2016.PMID:27920782Free PMC article.
References
- Beerling D.J. Evolutionary responses of land plants to atmospheric CO2. In: Ehleringer J.R, Cerling T.E, Dearing D.M, editors. A history of atmospheric CO2 and its effects on plants, animals and ecosystems. Ecological studies. vol. 177. Springer; Berlin: 2005. pp. 114–132.
- Beerling D.J, Woodward F.I. Modelling the first 400 million years. Cambridge University Press; Cambridge, UK: 2001. Vegetation and the terrestrial carbon cycle.
- Bekker A, Holland H.D, Wang P.L, Rumble D, Stein H.J, Hannah J.L, Coetzee L.L, Beukes N.J. Dating the rise of atmospheric oxygen. Nature. 2004;427:117–120.doi:10.1038/nature02260 - DOI - PubMed
- Berner R.A. CO2 and O2. Oxford University Press; Oxford, UK: 2005. The Phanerozoic carbon cycle.
- Björkman O. Comparative photosynthetic CO2 exchange in higher plants. In: Hatch M.D, Osmond C.B, Slayter R.O, editors. Photosynthesis and photorespiration. Academic Press; San Diego, CA: 1971. pp. 18–32.
Publication types
MeSH terms
Substances
Related information
LinkOut - more resources
Full Text Sources
Miscellaneous