Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Wiley full text link Wiley
Full text links

Actions

Share

Review
.2005 Nov:1059:33-40.
doi: 10.1196/annals.1339.018.

Mechanisms of prostate tumorigenesis: roles for transcription factors Nkx3.1 and Egr1

Affiliations
Review

Mechanisms of prostate tumorigenesis: roles for transcription factors Nkx3.1 and Egr1

Sarki A Abdulkadir. Ann N Y Acad Sci.2005 Nov.

Abstract

Recent developments in the generation and analysis of transgenic mouse models have improved our understanding of the early stages of prostate tumorigenesis. Analysis of models based on the homeodomain protein Nkx3.1 and the zinc finger protein Egr1 suggests that these transcription factors play distinct roles in the initiation and progression of precursor prostatic intraepithelial neoplasia (PIN) lesions, respectively. Nkx3.1 is a candidate prostate tumor suppressor gene (TSG) that demonstrates haploinsufficiency. Disruption of one or both copies of the murine Nkx3.1 gene leads to the development of epithelial hyperplasia and PIN. This appears to be a consequence of delayed exit from the cell cycle by differentiating prostate luminal epithelial cells in Nkx3.1 mutant mice. Gene expression profiling has provided additional insight into the basis of haploinsufficiency in Nkx3.1 mutant mice. A reduction in Nkx3.1 dosage leads to dramatic alterations in the expression of a subset of genes by altering the probability of a target gene existing in the "on" or "off" state. The immediate early gene Egr1, on the other hand, is overexpressed in human and mouse prostate tumors and PIN lesions and regulates the expression of several genes implicated in prostate tumor progression, including platelet-derived growth factor and insulin-like growth factor II. Prostate cancer-prone mice lacking Egr1 exhibit a significant delay in tumor progression. Specifically, Egr1 deficiency impairs the transition from PIN to invasive carcinoma. Thus, Nkx3.1 and Egr1 regulate gene programs involved in distinct aspects of prostate tumorigenesis.

PubMed Disclaimer

Similar articles

See all similar articles

Cited by

See all "Cited by" articles

Publication types

MeSH terms

Substances

Related information

Grants and funding

LinkOut - more resources

Full text links
Wiley full text link Wiley
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp