Mechanisms of prostate tumorigenesis: roles for transcription factors Nkx3.1 and Egr1
- PMID:16382041
- DOI: 10.1196/annals.1339.018
Mechanisms of prostate tumorigenesis: roles for transcription factors Nkx3.1 and Egr1
Abstract
Recent developments in the generation and analysis of transgenic mouse models have improved our understanding of the early stages of prostate tumorigenesis. Analysis of models based on the homeodomain protein Nkx3.1 and the zinc finger protein Egr1 suggests that these transcription factors play distinct roles in the initiation and progression of precursor prostatic intraepithelial neoplasia (PIN) lesions, respectively. Nkx3.1 is a candidate prostate tumor suppressor gene (TSG) that demonstrates haploinsufficiency. Disruption of one or both copies of the murine Nkx3.1 gene leads to the development of epithelial hyperplasia and PIN. This appears to be a consequence of delayed exit from the cell cycle by differentiating prostate luminal epithelial cells in Nkx3.1 mutant mice. Gene expression profiling has provided additional insight into the basis of haploinsufficiency in Nkx3.1 mutant mice. A reduction in Nkx3.1 dosage leads to dramatic alterations in the expression of a subset of genes by altering the probability of a target gene existing in the "on" or "off" state. The immediate early gene Egr1, on the other hand, is overexpressed in human and mouse prostate tumors and PIN lesions and regulates the expression of several genes implicated in prostate tumor progression, including platelet-derived growth factor and insulin-like growth factor II. Prostate cancer-prone mice lacking Egr1 exhibit a significant delay in tumor progression. Specifically, Egr1 deficiency impairs the transition from PIN to invasive carcinoma. Thus, Nkx3.1 and Egr1 regulate gene programs involved in distinct aspects of prostate tumorigenesis.
Similar articles
- Impaired prostate tumorigenesis in Egr1-deficient mice.Abdulkadir SA, Qu Z, Garabedian E, Song SK, Peters TJ, Svaren J, Carbone JM, Naughton CK, Catalona WJ, Ackerman JJ, Gordon JI, Humphrey PA, Milbrandt J.Abdulkadir SA, et al.Nat Med. 2001 Jan;7(1):101-7. doi: 10.1038/83231.Nat Med. 2001.PMID:11135623
- Nkx3.1 mutant mice recapitulate early stages of prostate carcinogenesis.Kim MJ, Bhatia-Gaur R, Banach-Petrosky WA, Desai N, Wang Y, Hayward SW, Cunha GR, Cardiff RD, Shen MM, Abate-Shen C.Kim MJ, et al.Cancer Res. 2002 Jun 1;62(11):2999-3004.Cancer Res. 2002.PMID:12036903
- Deletion, methylation, and expression of the NKX3.1 suppressor gene in primary human prostate cancer.Asatiani E, Huang WX, Wang A, Rodriguez Ortner E, Cavalli LR, Haddad BR, Gelmann EP.Asatiani E, et al.Cancer Res. 2005 Feb 15;65(4):1164-73. doi: 10.1158/0008-5472.CAN-04-2688.Cancer Res. 2005.PMID:15734999
- Roles of the Nkx3.1 homeobox gene in prostate organogenesis and carcinogenesis.Shen MM, Abate-Shen C.Shen MM, et al.Dev Dyn. 2003 Dec;228(4):767-78. doi: 10.1002/dvdy.10397.Dev Dyn. 2003.PMID:14648854Review.
- Survey of genetically engineered mouse models for prostate cancer: analyzing the molecular basis of prostate cancer development, progression, and metastasis.Kasper S.Kasper S.J Cell Biochem. 2005 Feb 1;94(2):279-97. doi: 10.1002/jcb.20339.J Cell Biochem. 2005.PMID:15565647Review.
Cited by
- Prostate cancer epigenome.Chinaranagari S, Sharma P, Bowen NJ, Chaudhary J.Chinaranagari S, et al.Methods Mol Biol. 2015;1238:125-40. doi: 10.1007/978-1-4939-1804-1_7.Methods Mol Biol. 2015.PMID:25421658Free PMC article.Review.
- Nkx3.1 and Myc crossregulate shared target genes in mouse and human prostate tumorigenesis.Anderson PD, McKissic SA, Logan M, Roh M, Franco OE, Wang J, Doubinskaia I, van der Meer R, Hayward SW, Eischen CM, Eltoum IE, Abdulkadir SA.Anderson PD, et al.J Clin Invest. 2012 May;122(5):1907-19. doi: 10.1172/JCI58540. Epub 2012 Apr 9.J Clin Invest. 2012.PMID:22484818Free PMC article.
- Deletion of NKX3.1 via CRISPR/Cas9 Induces Prostatic Intraepithelial Neoplasia in C57BL/6 Mice.Park JJ, Kim JE, Jeon Y, Lee MR, Choi JY, Song BR, Park JW, Kang MJ, Choi HJ, Bae SJ, Lee H, Kang BC, Hwang DY.Park JJ, et al.Technol Cancer Res Treat. 2020 Jan-Dec;19:1533033820964425. doi: 10.1177/1533033820964425.Technol Cancer Res Treat. 2020.PMID:33094683Free PMC article.
- EGR1 Addiction in Diffuse Large B-cell Lymphoma.Kimpara S, Lu L, Hoang NM, Zhu F, Bates PD, Daenthanasanmak A, Zhang S, Yang DT, Kelm A, Liu Y, Li Y, Rosiejka A, Kondapelli A, Bebel S, Chen M, Waldmann TA, Capitini CM, Rui L.Kimpara S, et al.Mol Cancer Res. 2021 Aug;19(8):1258-1269. doi: 10.1158/1541-7786.MCR-21-0267. Epub 2021 May 12.Mol Cancer Res. 2021.PMID:33980611Free PMC article.
- EGR1 as a potential marker of prognosis in extranodal NK/T-cell lymphoma.Lee JY, Kim JH, Bang H, Cho J, Ko YH, Kim SJ, Kim WS.Lee JY, et al.Sci Rep. 2021 May 14;11(1):10342. doi: 10.1038/s41598-021-89754-8.Sci Rep. 2021.PMID:33990633Free PMC article.
Publication types
MeSH terms
Substances
Related information
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous