Contribution of 5-HT2 receptor subtypes to sleep-wakefulness and respiratory control, and functional adaptations in knock-out mice lacking 5-HT2A receptors
- PMID:16339018
- PMCID: PMC6725907
- DOI: 10.1523/JNEUROSCI.1724-05.2005
Contribution of 5-HT2 receptor subtypes to sleep-wakefulness and respiratory control, and functional adaptations in knock-out mice lacking 5-HT2A receptors
Abstract
Serotonin (5-hydroxytryptamine; 5-HT) plays key roles in sleep-wakefulness regulation. Evidence indicates that 5-HT2 receptors are involved mainly in non-rapid eye movement sleep (NREMS) regulation and respiratory control. Here, we investigated the relative contribution of 5-HT(2A), 5-HT(2B), and 5-HT(2C) receptor subtypes to NREMS and breathing during sleep, using 5-HT2 subtype-selective ligands in wild-type (5-HT(2A)+/+) and knock-out (5-HT(2A)-/-) mice that do not express 5-HT(2A) receptors. Acute blockade of 5-HT(2A) receptors induced an increase in NREMS in 5-HT(2A)+/+ mice, but not 5-HT(2A)-/- mutants, which spontaneously expressed less NREMS than wild-type animals. In 5-HT(2A)+/+ mice, 5-HT(2B) receptor blockade produced a reduction of NREMS, whereas receptor activation induced an increase in this sleep stage. These effects were less pronounced in 5-HT(2A)-/- mice, indicating a lower sensitivity of 5-HT(2B) receptors in mutants, with no change in 5-HT(2B) mRNA. Blockade of 5-HT(2C) receptors had no effect on NREMS in both strains. In addition, an increase in EEG power density after sleep deprivation was observed in 5-HT(2A)+/+ mice but not in 5-HT(2A)-/- mice. Whole-body plethysmographic recordings indicated that 5-HT(2A) receptor blockade in 5-HT(2A)+/+ mice reduced NREMS apneas and bradypneas that occurred after sighs. In contrast, in 5-HT(2A)-/- mutants, NREMS apneas were not modified, and bradypnea after sighs were more pronounced. Our results demonstrate that 5-HT exerts a 5-HT(2B)-mediated facilitation of NREMS, and an influence respectively inhibitory on NREMS and facilitatory on sleep apnea generation, via 5-HT(2A) receptors. Moreover, 5-HT(2A) gene knock-out leads to functional compensations yielding adaptive changes opposite to those caused by pharmacological blockade of 5-HT(2A) receptors in 5-HT(2A)+/+ mice.
Figures








Similar articles
- Serotonin control of sleep-wake behavior.Monti JM.Monti JM.Sleep Med Rev. 2011 Aug;15(4):269-81. doi: 10.1016/j.smrv.2010.11.003. Epub 2011 Apr 2.Sleep Med Rev. 2011.PMID:21459634Review.
- Sleep Homeostatic and Waking Behavioral Phenotypes inEgr3-Deficient Mice Associated with Serotonin Receptor 5-HT2 Deficits.Grønli J, Clegern WC, Schmidt MA, Nemri RS, Rempe MJ, Gallitano AL, Wisor JP.Grønli J, et al.Sleep. 2016 Dec 1;39(12):2189-2199. doi: 10.5665/sleep.6324.Sleep. 2016.PMID:28057087Free PMC article.
- Involvement of 5-HT1A receptors in homeostatic and stress-induced adaptive regulations of paradoxical sleep: studies in 5-HT1A knock-out mice.Boutrel B, Monaca C, Hen R, Hamon M, Adrien J.Boutrel B, et al.J Neurosci. 2002 Jun 1;22(11):4686-92. doi: 10.1523/JNEUROSCI.22-11-04686.2002.J Neurosci. 2002.PMID:12040075Free PMC article.
- Pharmacological characterisation of the agonist radioligand binding site of 5-HT(2A), 5-HT(2B) and 5-HT(2C) receptors.Knight AR, Misra A, Quirk K, Benwell K, Revell D, Kennett G, Bickerdike M.Knight AR, et al.Naunyn Schmiedebergs Arch Pharmacol. 2004 Aug;370(2):114-23. doi: 10.1007/s00210-004-0951-4. Epub 2004 Jul 30.Naunyn Schmiedebergs Arch Pharmacol. 2004.PMID:15322733
- [Implication of serotonin in the control of vigilance states as revealed by knockout-mouse studies].Adrien J.Adrien J.J Soc Biol. 2004;198(1):30-6.J Soc Biol. 2004.PMID:15146953Review.French.
Cited by
- Dopamine release induced by atypical antipsychotics in prefrontal cortex requires 5-HT(1A) receptors but not 5-HT(2A) receptors.Bortolozzi A, Masana M, Díaz-Mataix L, Cortés R, Scorza MC, Gingrich JA, Toth M, Artigas F.Bortolozzi A, et al.Int J Neuropsychopharmacol. 2010 Nov;13(10):1299-314. doi: 10.1017/S146114571000009X. Epub 2010 Feb 17.Int J Neuropsychopharmacol. 2010.PMID:20158933Free PMC article.
- Sleep apneas are increased in mice lacking monoamine oxidase A.Real C, Popa D, Seif I, Callebert J, Launay JM, Adrien J, Escourrou P.Real C, et al.Sleep. 2007 Oct;30(10):1295-302. doi: 10.1093/sleep/30.10.1295.Sleep. 2007.PMID:17969463Free PMC article.
- Identification of Potent, Selective, and Peripherally Restricted Serotonin Receptor 2B Antagonists from a High-Throughput Screen.Bender AM, Valentine MS, Bauer JA, Days E, Lindsley CW, Merryman WD.Bender AM, et al.Assay Drug Dev Technol. 2023 Apr;21(3):89-96. doi: 10.1089/adt.2022.116. Epub 2023 Mar 17.Assay Drug Dev Technol. 2023.PMID:36930852Free PMC article.
- Pimavanserin, a 5HT2A receptor inverse agonist, rapidly suppresses Aβ production and related pathology in a mouse model of Alzheimer's disease.Yuede CM, Wallace CE, Davis TA, Gardiner WD, Hettinger JC, Edwards HM, Hendrix RD, Doherty BM, Yuede KM, Burstein ES, Cirrito JR.Yuede CM, et al.J Neurochem. 2021 Mar;156(5):658-673. doi: 10.1111/jnc.15260. Epub 2021 Jan 10.J Neurochem. 2021.PMID:33278025Free PMC article.
- Revisiting the Role of Serotonin in Sleep-Disordered Breathing.Aung O, Amorim MR, Mendelowitz D, Polotsky VY.Aung O, et al.Int J Mol Sci. 2024 Jan 25;25(3):1483. doi: 10.3390/ijms25031483.Int J Mol Sci. 2024.PMID:38338762Free PMC article.Review.
References
- Adrien J, Dugovic C, Martin P (1991) Sleep-wakefulness patterns in the helpless rat. Physiol Behav 49: 257–262. - PubMed
- Adrien J, Alexandre C, Boutrel B, Popa D (2004) Contribution of the “knock-out” technology to understanding the role of serotonin in sleep regulations. Arch Ital Biol 142: 369–377. - PubMed
- Ansorge MS, Zhou M, Lira A, Hen R, Gingrich JA (2004) Early-life blockade of the 5-HT transporter alters emotional behavior in adult mice. Science 306: 879–881. - PubMed
- Benca R (2000) Mood disorders. In: Principles and practice of sleep medicine (Kryger M, Roth T, Dement W, eds), pp 1140–1158. Philadelphia: Saunders.
- Benington JH, Heller HC (1995) Monoaminergic and cholinergic modulation of REM-sleep timing in rats. Brain Res 681: 141–146. - PubMed
Publication types
MeSH terms
Substances
Related information
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases