Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Silverchair Information Systems full text link Silverchair Information Systems
Full text links

Actions

Share

Review
.2005 Oct-Dec;25(5-6):363-85.
doi: 10.1007/s10540-005-2896-3.

Transmembrane signaling in the brain by serotonin, a key regulator of physiology and emotion

Affiliations
Review

Transmembrane signaling in the brain by serotonin, a key regulator of physiology and emotion

Tatyana Adayev et al. Biosci Rep.2005 Oct-Dec.

Abstract

Serotonin (5-HT) is an ancient chemical that plays a crucial functional role in almost every living organism. It regulates platelet aggregation, activation of immune cells, and contraction of stomach and intestinal muscles. In addition, serotonin acts as a neurotransmitter in the brain and the peripheral nervous system. These activities are initiated by the binding of serotonin to 15 or more receptors that are pharmacologically classified into seven groups, 5-HT1 through 5-HT7. Each group is further divided into subgroups of receptors that are homologous but are encoded by discrete genes. With the exception of the 5-HT3 receptor--a cation channel--all of the others are G protein-coupled receptors that potentially activate or inhibit a large number of biochemical cascades. This review will endeavor to compare and contrast such signaling pathways with special attention to their tissue-specific occurrence, their possible role in immediate effects on covalent modification of other proteins, and relatively slower effects on gene expression, physiology and behavior.

PubMed Disclaimer

Similar articles

See all similar articles

Cited by

See all "Cited by" articles

Publication types

MeSH terms

Substances

Related information

LinkOut - more resources

Full text links
Silverchair Information Systems full text link Silverchair Information Systems
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp