EndoG is dispensable in embryogenesis and apoptosis
- PMID:16239930
- DOI: 10.1038/sj.cdd.4401787
EndoG is dispensable in embryogenesis and apoptosis
Abstract
The mitochondrial protein, endonuclease G (EndoG), is one of the endonucleases implicated in DNA fragmentation during apoptosis. It has been shown to translocate from the mitochondria to the nucleus upon cell death stimuli. These observations suggest that EndoG is a mitochondrial cell death effector, and that it possibly acts as a cell death nuclease, similar to DNA fragmentation factor. To better understand the role of EndoG in development and apoptosis, we generated EndoG null mice by homologous gene targeting without disruption of D2Wsu81e. EndoG null mice are viable and develop to adulthood with no obvious abnormalities. Fibroblasts generated from the EndoG null mice show no difference in susceptibility when induced to die by a variety of intrinsic and extrinsic apoptotic stimuli. Additionally, EndoG null mice are equally sensitive to excitotoxic stress. These data suggest that EndoG is not essential for early embryogenesis and apoptosis.
Similar articles
- 4-hydroperoxy-cyclophosphamide mediates caspase-independent T-cell apoptosis involving oxidative stress-induced nuclear relocation of mitochondrial apoptogenic factors AIF and EndoG.Strauss G, Westhoff MA, Fischer-Posovszky P, Fulda S, Schanbacher M, Eckhoff SM, Stahnke K, Vahsen N, Kroemer G, Debatin KM.Strauss G, et al.Cell Death Differ. 2008 Feb;15(2):332-43. doi: 10.1038/sj.cdd.4402272. Epub 2007 Nov 23.Cell Death Differ. 2008.PMID:18034189
- Early nuclear translocation of endonuclease G and subsequent DNA fragmentation after transient focal cerebral ischemia in mice.Lee BI, Lee DJ, Cho KJ, Kim GW.Lee BI, et al.Neurosci Lett. 2005 Sep 23;386(1):23-7. doi: 10.1016/j.neulet.2005.05.058.Neurosci Lett. 2005.PMID:15979239
- Inhibition of K+ efflux prevents mitochondrial dysfunction, and suppresses caspase-3-, apoptosis-inducing factor-, and endonuclease G-mediated constitutive apoptosis in human neutrophils.El Kebir D, József L, Khreiss T, Filep JG.El Kebir D, et al.Cell Signal. 2006 Dec;18(12):2302-13. doi: 10.1016/j.cellsig.2006.05.013. Epub 2006 Jun 27.Cell Signal. 2006.PMID:16806822
- Apoptotic endonuclease EndoG induces alternative splicing of Caspase-2.Zhdanov DD, Gladilina YA, Shisparenok AN.Zhdanov DD, et al.Biomed Khim. 2024 Aug;70(4):218-230. doi: 10.18097/PBMC20247004218.Biomed Khim. 2024.PMID:39239896Review.
- Programmed cell death in mouse brain development.Kuan CY, Flavell RA, Rakic P.Kuan CY, et al.Results Probl Cell Differ. 2000;30:145-62. doi: 10.1007/978-3-540-48002-0_6.Results Probl Cell Differ. 2000.PMID:10857188Review.No abstract available.
Cited by
- The effects of ENDOG on lipid metabolism may be tissue-dependent and may not require its translocation from mitochondria.Llovera M, Gouveia L, Zorzano A, Sanchis D.Llovera M, et al.Nat Commun. 2024 Aug 21;15(1):7121. doi: 10.1038/s41467-024-51447-x.Nat Commun. 2024.PMID:39169002Free PMC article.No abstract available.
- Mitochondrial control of caspase-dependent and -independent cell death.Pradelli LA, Bénéteau M, Ricci JE.Pradelli LA, et al.Cell Mol Life Sci. 2010 May;67(10):1589-97. doi: 10.1007/s00018-010-0285-y. Epub 2010 Feb 12.Cell Mol Life Sci. 2010.PMID:20151314Free PMC article.Review.
- Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, Annicchiarico-Petruzzelli M, Antonov AV, Arama E, Baehrecke EH, Barlev NA, Bazan NG, Bernassola F, Bertrand MJM, Bianchi K, Blagosklonny MV, Blomgren K, Borner C, Boya P, Brenner C, Campanella M, Candi E, Carmona-Gutierrez D, Cecconi F, Chan FK, Chandel NS, Cheng EH, Chipuk JE, Cidlowski JA, Ciechanover A, Cohen GM, Conrad M, Cubillos-Ruiz JR, Czabotar PE, D'Angiolella V, Dawson TM, Dawson VL, De Laurenzi V, De Maria R, Debatin KM, DeBerardinis RJ, Deshmukh M, Di Daniele N, Di Virgilio F, Dixit VM, Dixon SJ, Duckett CS, Dynlacht BD, El-Deiry WS, Elrod JW, Fimia GM, Fulda S, García-Sáez AJ, Garg AD, Garrido C, Gavathiotis E, Golstein P, Gottlieb E, Green DR, Greene LA, Gronemeyer H, Gross A, Hajnoczky G, Hardwick JM, Harris IS, Hengartner MO, Hetz C, Ichijo H, Jäättelä M, Joseph B, Jost PJ, Juin PP, Kaiser WJ, Karin M, Kaufmann T, Kepp O, Kimchi A, Kitsis RN, Klionsky DJ, Knight RA, Kumar S, Lee SW, Lemasters JJ, Levine B, Linkermann A, Lipton SA, Lockshin RA, López-Otín C, Lowe SW, Luedde T, Lugli E, MacFarlane M, Madeo F, Malewicz M, Malorni W, Manic G, Marine JC, Marti…See abstract for full author list ➔Galluzzi L, et al.Cell Death Differ. 2018 Mar;25(3):486-541. doi: 10.1038/s41418-017-0012-4. Epub 2018 Jan 23.Cell Death Differ. 2018.PMID:29362479Free PMC article.Review.
- Apoptotic proteins with non-apoptotic activity: expression and function in cancer.Shoshan-Barmatz V, Arif T, Shteinfer-Kuzmine A.Shoshan-Barmatz V, et al.Apoptosis. 2023 Jun;28(5-6):730-753. doi: 10.1007/s10495-023-01835-3. Epub 2023 Apr 4.Apoptosis. 2023.PMID:37014578Free PMC article.Review.
- Repair of persistent strand breaks in the mitochondrial genome.Sykora P, Wilson DM 3rd, Bohr VA.Sykora P, et al.Mech Ageing Dev. 2012 Apr;133(4):169-75. doi: 10.1016/j.mad.2011.11.003. Epub 2011 Nov 28.Mech Ageing Dev. 2012.PMID:22138376Free PMC article.Review.
Publication types
MeSH terms
Substances
Related information
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases