MicroRNAs acting in a double-negative feedback loop to control a neuronal cell fate decision
- PMID:16099833
- PMCID: PMC1194938
- DOI: 10.1073/pnas.0505530102
MicroRNAs acting in a double-negative feedback loop to control a neuronal cell fate decision
Abstract
The elucidation of the architecture of gene regulatory networks that control cell-type specific gene expression programs represents a major challenge in developmental biology. We describe here a cell fate decision between two alternative neuronal fates and the architecture of a gene regulatory network that controls this cell fate decision. The two Caenorhabditis elegans taste receptor neurons "ASE left" (ASEL) and "ASE right" (ASER) share many bilaterally symmetric features, but each cell expresses a distinct set of chemoreceptors that endow the gustatory system with the capacity to sense and discriminate specific environmental inputs. We show that these left/right asymmetric fates develop from a precursor state in which both ASE neurons express equivalent features. This hybrid precursor state is unstable and transitions into the stable ASEL or ASER terminal end state. Although this transition is spatially stereotyped in wild-type animals, mutant analysis reveals that each cell has the potential to transition into either the ASEL or ASER stable end state. The stability and irreversibility of the terminal differentiated state is ensured by the interactions of two microRNAs (miRNAs) and their transcription factor targets in a double-negative feedback loop. Simple feedback loops are found as common motifs in many gene regulatory networks, but the loop described here is unusually complex and involves miRNAs. The interaction of miRNAs in double-negative feedback loops may not only be a means for miRNAs to regulate their own expression but may also represent a general paradigm for how terminal cell fates are selected and stabilized.
Figures




Similar articles
- A novel C. elegans zinc finger transcription factor, lsy-2, required for the cell type-specific expression of the lsy-6 microRNA.Johnston RJ Jr, Hobert O.Johnston RJ Jr, et al.Development. 2005 Dec;132(24):5451-60. doi: 10.1242/dev.02163. Epub 2005 Nov 16.Development. 2005.PMID:16291785
- Genetic screens for Caenorhabditis elegans mutants defective in left/right asymmetric neuronal fate specification.Sarin S, O'Meara MM, Flowers EB, Antonio C, Poole RJ, Didiano D, Johnston RJ Jr, Chang S, Narula S, Hobert O.Sarin S, et al.Genetics. 2007 Aug;176(4):2109-30. doi: 10.1534/genetics.107.075648.Genetics. 2007.PMID:17717195Free PMC article.
- MicroRNAs act sequentially and asymmetrically to control chemosensory laterality in the nematode.Chang S, Johnston RJ Jr, Frøkjaer-Jensen C, Lockery S, Hobert O.Chang S, et al.Nature. 2004 Aug 12;430(7001):785-9. doi: 10.1038/nature02752.Nature. 2004.PMID:15306811
- Architecture of a microRNA-controlled gene regulatory network that diversifies neuronal cell fates.Hobert O.Hobert O.Cold Spring Harb Symp Quant Biol. 2006;71:181-8. doi: 10.1101/sqb.2006.71.006.Cold Spring Harb Symp Quant Biol. 2006.PMID:17381295Review.
- Development of left/right asymmetry in the Caenorhabditis elegans nervous system: from zygote to postmitotic neuron.Hobert O.Hobert O.Genesis. 2014 Jun;52(6):528-43. doi: 10.1002/dvg.22747. Epub 2014 Feb 25.Genesis. 2014.PMID:24510690Review.
Cited by
- Construction and analysis of an integrated regulatory network derived from high-throughput sequencing data.Cheng C, Yan KK, Hwang W, Qian J, Bhardwaj N, Rozowsky J, Lu ZJ, Niu W, Alves P, Kato M, Snyder M, Gerstein M.Cheng C, et al.PLoS Comput Biol. 2011 Nov;7(11):e1002190. doi: 10.1371/journal.pcbi.1002190. Epub 2011 Nov 17.PLoS Comput Biol. 2011.PMID:22125477Free PMC article.
- Robust partitioning of microRNA targets from downstream regulatory changes.Patel RK, West JD, Jiang Y, Fogarty EA, Grimson A.Patel RK, et al.Nucleic Acids Res. 2020 Sep 25;48(17):9724-9746. doi: 10.1093/nar/gkaa687.Nucleic Acids Res. 2020.PMID:32821933Free PMC article.
- Stochastic mechanisms of cell fate specification that yield random or robust outcomes.Johnston RJ Jr, Desplan C.Johnston RJ Jr, et al.Annu Rev Cell Dev Biol. 2010;26:689-719. doi: 10.1146/annurev-cellbio-100109-104113.Annu Rev Cell Dev Biol. 2010.PMID:20590453Free PMC article.Review.
- The Caenorhabditis elegans vulva: a post-embryonic gene regulatory network controlling organogenesis.Ririe TO, Fernandes JS, Sternberg PW.Ririe TO, et al.Proc Natl Acad Sci U S A. 2008 Dec 23;105(51):20095-9. doi: 10.1073/pnas.0806377105. Epub 2008 Dec 22.Proc Natl Acad Sci U S A. 2008.PMID:19104047Free PMC article.
- The role of microRNAs in human neural stem cells, neuronal differentiation and subtype specification.Stappert L, Roese-Koerner B, Brüstle O.Stappert L, et al.Cell Tissue Res. 2015 Jan;359(1):47-64. doi: 10.1007/s00441-014-1981-y. Epub 2014 Aug 30.Cell Tissue Res. 2015.PMID:25172833Free PMC article.Review.
References
- Pierce-Shimomura, J. T., Faumont, S., Gaston, M. R., Pearson, B. J. & Lockery, S. R. (2001) Nature 410, 694–698. - PubMed
- Hobert, O., Tessmar, K. & Ruvkun, G. (1999) Development (Cambridge, U.K.) 126, 1547–1562. - PubMed
- Chang, S., Johnston, R. J., Frokjaer-Jensen, C., Lockery, S. & Hobert, O. (2004) Nature 430, 785–789. - PubMed
Publication types
MeSH terms
Substances
Related information
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases