Cortical glutamate-dopamine interaction and ketamine-induced psychotic symptoms in man
- PMID:16001106
- DOI: 10.1007/s00213-005-0092-6
Cortical glutamate-dopamine interaction and ketamine-induced psychotic symptoms in man
Abstract
Rationale: The noncompetitive glutamate N-methyl-D: -aspartate receptor antagonist ketamine induces transient psychotic symptoms in man. Involvement of dopaminergic mechanisms in these effects has been suggested.
Objectives: The purpose of this article is to study the effects of ketamine on extrastriatal dopamine receptor availability in healthy subjects and extracellular dopamine levels in rat cortex.
Materials and methods: The effect of computer-driven subanesthetic ketamine infusion on cortical dopamine release was studied in healthy male subjects using a controlled study design. Dopamine D2/D3 receptor availability was quantified using positron emission tomography (PET) and [11C]FLB 457. A conventional region of interest-based analysis and voxel-based analysis was applied to the PET data. The ketamine-induced cortical dopamine release in rats was studied using in vivo microdialysis.
Results: Ketamine infusion reduced significantly the [11C]FLB 457 binding potential (BP) in the posterior cingulate/retrosplenial cortices, suggestive of increased dopamine release. This brain imaging finding was further supported by a microdialysis experiment in rats showing that ketamine increased the extracellular dopamine concentration by up to 200% in the retrosplenial cortex. Ketamine-induced psychotic symptoms were associated with changes in the [11C]FLB 457 BP in the dorsolateral prefrontal and anterior cingulate cortices.
Conclusions: Our results suggest that cortical dopaminergic mechanisms have a role in the emergence of ketamine-induced psychosis-like symptoms in man. The glutamate-dopamine interaction in the posterior cingulate during ketamine infusion is well in line with the recent functional and structural imaging studies suggesting involvement of this cortical area in the development of schizophrenic psychosis.
Similar articles
- Ketamine does not decrease striatal dopamine D2 receptor binding in man.Aalto S, Hirvonen J, Kajander J, Scheinin H, Någren K, Vilkman H, Gustafsson L, Syvälahti E, Hietala J.Aalto S, et al.Psychopharmacology (Berl). 2002 Dec;164(4):401-6. doi: 10.1007/s00213-002-1236-6. Epub 2002 Oct 12.Psychopharmacology (Berl). 2002.PMID:12457270
- Glutamate modulation of dopamine measured in vivo with positron emission tomography (PET) and 11C-raclopride in normal human subjects.Smith GS, Schloesser R, Brodie JD, Dewey SL, Logan J, Vitkun SA, Simkowitz P, Hurley A, Cooper T, Volkow ND, Cancro R.Smith GS, et al.Neuropsychopharmacology. 1998 Jan;18(1):18-25. doi: 10.1016/S0893-133X(97)00092-4.Neuropsychopharmacology. 1998.PMID:9408915Clinical Trial.
- Positron emission tomography imaging of amphetamine-induced dopamine release in the human cortex: a comparative evaluation of the high affinity dopamine D2/3 radiotracers [11C]FLB 457 and [11C]fallypride.Narendran R, Frankle WG, Mason NS, Rabiner EA, Gunn RN, Searle GE, Vora S, Litschge M, Kendro S, Cooper TB, Mathis CA, Laruelle M.Narendran R, et al.Synapse. 2009 Jun;63(6):447-61. doi: 10.1002/syn.20628.Synapse. 2009.PMID:19217025
- [Glutaminergic hypothesis of schizophrenia: clinical research studies with ketamine].Mechri A, Saoud M, Khiari G, d'Amato T, Dalery J, Gaha L.Mechri A, et al.Encephale. 2001 Jan-Feb;27(1):53-9.Encephale. 2001.PMID:11294039Review.French.
- Pharmacodynamic elucidation of glutamate & dopamine in ketamine-induced anaesthesia.Sun LH, Fan YY, Wang X, Zheng HB.Sun LH, et al.Chem Biol Interact. 2020 Aug 25;327:109164. doi: 10.1016/j.cbi.2020.109164. Epub 2020 Jun 7.Chem Biol Interact. 2020.PMID:32524992Review.
Cited by
- Glutamate and dopamine in schizophrenia: an update for the 21st century.Howes O, McCutcheon R, Stone J.Howes O, et al.J Psychopharmacol. 2015 Feb;29(2):97-115. doi: 10.1177/0269881114563634. Epub 2015 Jan 13.J Psychopharmacol. 2015.PMID:25586400Free PMC article.Review.
- Multifaceted genomic risk for brain function in schizophrenia.Chen J, Calhoun VD, Pearlson GD, Ehrlich S, Turner JA, Ho BC, Wassink TH, Michael AM, Liu J.Chen J, et al.Neuroimage. 2012 Jul 16;61(4):866-75. doi: 10.1016/j.neuroimage.2012.03.022. Epub 2012 Mar 13.Neuroimage. 2012.PMID:22440650Free PMC article.
- Neurochemical modulators of sleep and anesthetic states.Van Dort CJ, Baghdoyan HA, Lydic R.Van Dort CJ, et al.Int Anesthesiol Clin. 2008 Summer;46(3):75-104. doi: 10.1097/AIA.0b013e318181a8ca.Int Anesthesiol Clin. 2008.PMID:18617819Free PMC article.Review.No abstract available.
- The neural circuitry of executive functions in healthy subjects and Parkinson's disease.Leh SE, Petrides M, Strafella AP.Leh SE, et al.Neuropsychopharmacology. 2010 Jan;35(1):70-85. doi: 10.1038/npp.2009.88.Neuropsychopharmacology. 2010.PMID:19657332Free PMC article.Review.
- Glutamate levels in the associative striatum before and after 4 weeks of antipsychotic treatment in first-episode psychosis: a longitudinal proton magnetic resonance spectroscopy study.de la Fuente-Sandoval C, León-Ortiz P, Azcárraga M, Stephano S, Favila R, Díaz-Galvis L, Alvarado-Alanis P, Ramírez-Bermúdez J, Graff-Guerrero A.de la Fuente-Sandoval C, et al.JAMA Psychiatry. 2013 Oct;70(10):1057-66. doi: 10.1001/jamapsychiatry.2013.289.JAMA Psychiatry. 2013.PMID:23966023Free PMC article.Clinical Trial.
References
Publication types
MeSH terms
Substances
Related information
LinkOut - more resources
Full Text Sources
Other Literature Sources