Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

BioMed Central full text link BioMed Central Free PMC article
Full text links

Actions

Share

.2005 Jun 15;2(1):14.
doi: 10.1186/1743-7075-2-14.

Contribution of anaerobic energy expenditure to whole body thermogenesis

Affiliations

Contribution of anaerobic energy expenditure to whole body thermogenesis

Christopher B Scott. Nutr Metab (Lond)..

Abstract

Heat production serves as the standard measurement for the determination of energy expenditure and efficiency in animals. Estimations of metabolic heat production have traditionally focused on gas exchange (oxygen uptake and carbon dioxide production) although direct heat measurements may include an anaerobic component particularly when carbohydrate is oxidized. Stoichiometric interpretations of the ratio of carbon dioxide production to oxygen uptake suggest that both anaerobic and aerobic heat production and, by inference, all energy expenditure--can be accounted for with a measurement of oxygen uptake as 21.1 kJ per liter of oxygen. This manuscript incorporates contemporary bioenergetic interpretations of anaerobic and aerobic ATP turnover to promote the independence of these disparate types of metabolic energy transfer: each has different reactants and products, uses dissimilar enzymes, involves different types of biochemical reactions, takes place in separate cellular compartments, exploits different types of gradients and ultimately each operates with distinct efficiency. The 21.1 kJ per liter of oxygen for carbohydrate oxidation includes a small anaerobic heat component as part of anaerobic energy transfer. Faster rates of ATP turnover that exceed mitochondrial respiration and that are supported by rapid glycolytic phosphorylation with lactate production result in heat production that is independent of oxygen uptake. Simultaneous direct and indirect calorimetry has revealed that this anaerobic heat does not disappear when lactate is later oxidized and so oxygen uptake does not adequately measure anaerobic efficiency or energy expenditure (as was suggested by the "oxygen debt" hypothesis). An estimate of anaerobic energy transfer supplements the measurement of oxygen uptake and may improve the interpretation of whole-body energy expenditure.

PubMed Disclaimer

Figures

Figure 1
Figure 1
In the top figure, oxygen deficit (pink) represents the anaerobic energy expenditure component to exercise: rapid glycolytic ATP re-synthesis and the use of stored ATP/PC. In this bout of long duration, low to moderate intensity, steady state exercise, the rapid glycolytic component does not make a significant contribution to total energy expenditure. The bottom left figure reveals oxygen uptake measurements for brief, non-steady state, heavy to severe exercise (e.g., a single weight lifting exercise or a quick sprint up a steep hill); vertical lines mark the start and finish to the exercise. The question marks indicate that it is not possible to determine the rapid glycolytic ATP re-synthesis from oxygen-only measurements. The bottom right figure includes a (theoretical) estimate of rapid glycolytic ATP re-synthesis (pink area) and reveals a large absolute and relative anaerobic energy expenditure component to total energy expenditure (restoration of ATP/PC stores are represented in the EPOC measurement).
Figure 2
Figure 2
Continuously increasing ramp exercise tests to exhaustion. Resting oxygen uptake is seen until the start of exercise (vertical line). At low to moderate work rates the oxygen uptake to Watts ratio is similar and linear for both slow (e.g., 15 Watts·min-1) and fast (e.g., 60 Watts·min-1) ramping tests. As the exercise intensity becomes "heavy to severe", the oxygen uptake to Watts ratio increases for the slow ramp test (top line). The opposite is true for the fast ramp test to exhaustion where the oxygen uptake to Watt ratio decreases (bottom line). Notice that the peak Watts are significantly different but the VO2maximum for the two tests is similar [51, 52]. Contributions of both anaerobic and aerobic energy transfer may explain these apparently disparate phenomena as described in the text.
See this image and copyright information in PMC

Similar articles

See all similar articles

Cited by

See all "Cited by" articles

References

    1. Loehr KD, Sayyadi P, Lamprecht I. Thermodynamic aspects of development for Tenebrio Molitor L. Experientia. 1976;32:1002–1003. doi: 10.1007/BF01933936. - DOI - PubMed
    1. Welch GR. Some problems in the usage of Gibbs free energy inbiochemistry. J Theor Biol. 1985;114:433–446. - PubMed
    1. Zotin AI. Thermodynamic Processes of Biological Processes. Walter de Gruyter, Berlin; 1990.
    1. Webb P. The physiology of heat regulation. Am J Appl Physiol. 1995;268:R838–R850. - PubMed
    1. Hulbert AJ, Else PL. Mammals: an allometric study of metabolism at tissue and mitochondrial level. Am J Physiol. 1985;248:R415–R421. - PubMed

Related information

LinkOut - more resources

Full text links
BioMed Central full text link BioMed Central Free PMC article
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp