Structure of the cross-beta spine of amyloid-like fibrils
- PMID:15944695
- PMCID: PMC1479801
- DOI: 10.1038/nature03680
Structure of the cross-beta spine of amyloid-like fibrils
Abstract
Numerous soluble proteins convert to insoluble amyloid-like fibrils that have common properties. Amyloid fibrils are associated with fatal diseases such as Alzheimer's, and amyloid-like fibrils can be formed in vitro. For the yeast protein Sup35, conversion to amyloid-like fibrils is associated with a transmissible infection akin to that caused by mammalian prions. A seven-residue peptide segment from Sup35 forms amyloid-like fibrils and closely related microcrystals, from which we have determined the atomic structure of the cross-beta spine. It is a double beta-sheet, with each sheet formed from parallel segments stacked in register. Side chains protruding from the two sheets form a dry, tightly self-complementing steric zipper, bonding the sheets. Within each sheet, every segment is bound to its two neighbouring segments through stacks of both backbone and side-chain hydrogen bonds. The structure illuminates the stability of amyloid fibrils, their self-seeding characteristic and their tendency to form polymorphic structures.
Conflict of interest statement
Figures



Comment in
- Structural biology: prying into prions.Dobson CM.Dobson CM.Nature. 2005 Jun 9;435(7043):747-9. doi: 10.1038/435747a.Nature. 2005.PMID:15944684No abstract available.
Similar articles
- Atomic structures of amyloid cross-beta spines reveal varied steric zippers.Sawaya MR, Sambashivan S, Nelson R, Ivanova MI, Sievers SA, Apostol MI, Thompson MJ, Balbirnie M, Wiltzius JJ, McFarlane HT, Madsen AØ, Riekel C, Eisenberg D.Sawaya MR, et al.Nature. 2007 May 24;447(7143):453-7. doi: 10.1038/nature05695. Epub 2007 Apr 29.Nature. 2007.PMID:17468747
- Protein misfolding and amyloid formation for the peptide GNNQQNY from yeast prion protein Sup35: simulation by reaction path annealing.Lipfert J, Franklin J, Wu F, Doniach S.Lipfert J, et al.J Mol Biol. 2005 Jun 10;349(3):648-58. doi: 10.1016/j.jmb.2005.03.083. Epub 2005 Apr 13.J Mol Biol. 2005.PMID:15896350
- [Mechanism and application of molecular self-assembly in Sup35 prion domain of Saccharomyces cerevisiae].Yin W, He J, Yu Z, Wang J.Yin W, et al.Sheng Wu Gong Cheng Xue Bao. 2011 Oct;27(10):1401-7.Sheng Wu Gong Cheng Xue Bao. 2011.PMID:22260056Review.Chinese.
- HRMAS 1H NMR conformational study of the resin-bound amyloid-forming peptide GNNQQNY from the yeast prion Sup35.Andrey SB, Chan ML, Power WP.Andrey SB, et al.J Phys Chem A. 2010 Mar 18;114(10):3457-65. doi: 10.1021/jp909899w.J Phys Chem A. 2010.PMID:20155963
- Protein inheritance (prions) based on parallel in-register beta-sheet amyloid structures.Wickner RB, Shewmaker F, Kryndushkin D, Edskes HK.Wickner RB, et al.Bioessays. 2008 Oct;30(10):955-64. doi: 10.1002/bies.20821.Bioessays. 2008.PMID:18798523Free PMC article.Review.
Cited by
- Gelsolin amyloidosis: genetics, biochemistry, pathology and possible strategies for therapeutic intervention.Solomon JP, Page LJ, Balch WE, Kelly JW.Solomon JP, et al.Crit Rev Biochem Mol Biol. 2012 May-Jun;47(3):282-96. doi: 10.3109/10409238.2012.661401. Epub 2012 Feb 24.Crit Rev Biochem Mol Biol. 2012.PMID:22360545Free PMC article.Review.
- Monomeric a-synuclein (aS) inhibits amyloidogenesis of human prion protein (hPrP) by forming a stable aS-hPrP hetero-dimer.Yamashita S, O Kamatari Y, Honda R, Niwa A, Tomiata H, Hara A, Kuwata K.Yamashita S, et al.Prion. 2021 Dec;15(1):37-43. doi: 10.1080/19336896.2021.1910176.Prion. 2021.PMID:33849375Free PMC article.
- Hydrogen exchange mass spectrometry as an analytical tool for the analysis of amyloid fibrillogenesis.Scavenius C, Ghodke S, Otzen DE, Enghild JJ.Scavenius C, et al.Int J Mass Spectrom. 2011 Apr 30;302(1-3):167-173. doi: 10.1016/j.ijms.2010.10.001.Int J Mass Spectrom. 2011.PMID:22267952Free PMC article.
- Protein aggregation: in silico algorithms and applications.Prabakaran R, Rawat P, Thangakani AM, Kumar S, Gromiha MM.Prabakaran R, et al.Biophys Rev. 2021 Jan 17;13(1):71-89. doi: 10.1007/s12551-021-00778-w. eCollection 2021 Feb.Biophys Rev. 2021.PMID:33747245Free PMC article.Review.
- Cooperativity among short amyloid stretches in long amyloidogenic sequences.Hu L, Cui W, He Z, Shi X, Feng K, Ma B, Cai YD.Hu L, et al.PLoS One. 2012;7(6):e39369. doi: 10.1371/journal.pone.0039369. Epub 2012 Jun 22.PLoS One. 2012.PMID:22761773Free PMC article.
References
- Sipe JD, Cohen AS. Review: history of the amyloid fibril. J Struct Biol. 2000;130:88–98. - PubMed
- Cohen AS, Calkins E. Electron microscopic observations on a fibrous component in amyloid of diverse origins. Nature. 1959;183:1202–3. - PubMed
- Eanes ED, Glenner GG. X-ray diffraction studies on amyloid filaments. J Histochem Cytochem. 1968;16:673–7. - PubMed
- Geddes AJ, Parker KD, Atkins ED, Beighton E. “Cross-beta” conformation in proteins. J Mol Biol. 1968;32:343–58. - PubMed
- Sunde M, et al. Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J Mol Biol. 1997;273:729–39. - PubMed
Publication types
MeSH terms
Substances
Related information
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases