Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Elsevier Science full text link Elsevier Science
Full text links

Actions

Share

.2005 Jun 10;349(3):648-58.
doi: 10.1016/j.jmb.2005.03.083. Epub 2005 Apr 13.

Protein misfolding and amyloid formation for the peptide GNNQQNY from yeast prion protein Sup35: simulation by reaction path annealing

Affiliations

Protein misfolding and amyloid formation for the peptide GNNQQNY from yeast prion protein Sup35: simulation by reaction path annealing

Jan Lipfert et al. J Mol Biol..

Abstract

We study the early steps of amyloid formation of the seven residue peptide GNNQQNY from yeast prion-like protein Sup35 by simulating the random coil to beta-sheet and alpha-helix to beta-sheet transition both in the absence and presence of a cross-beta amyloid nucleus. The simulation method at atomic resolution employs a new implementation of a Langevin dynamics "reaction path annealing" algorithm. The results indicate that the presence of amyloid-like cross-beta-sheet strands both facilitates the transition into the cross-beta conformation and substantially lowers the free energy barrier for this transition. This model systems allows us to investigate the energetic and kinetic details of this transition, which is consistent with an auto-catalyzed, nucleation-like mechanism for the formation of beta-amyloid. In particular, we find that electrostatic interactions of peptide backbone dipoles contribute significantly to the stability of the beta-amyloid state. Furthermore, we find water exclusion and interactions of polar side-chains to be driving forces of amyloid formation: the cross-beta conformation is stabilized by burial of polar side-chains and inter-residue hydrogen bonds in the presence of an amyloid-like "seed". These findings are in support of a "dry, polar zipper model" of amyloid formation.

PubMed Disclaimer

Similar articles

See all similar articles

Cited by

See all "Cited by" articles

Publication types

MeSH terms

Substances

Related information

Grants and funding

LinkOut - more resources

Full text links
Elsevier Science full text link Elsevier Science
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp