Identification and characterization of the putative fusion peptide of the severe acute respiratory syndrome-associated coronavirus spike protein
- PMID:15890958
- PMCID: PMC1112137
- DOI: 10.1128/JVI.79.11.7195-7206.2005
Identification and characterization of the putative fusion peptide of the severe acute respiratory syndrome-associated coronavirus spike protein
Abstract
Severe acute respiratory syndrome-associated coronavirus (SARS-CoV) is a newly identified member of the family Coronaviridae and poses a serious public health threat. Recent studies indicated that the SARS-CoV viral spike glycoprotein is a class I viral fusion protein. A fusion peptide present at the N-terminal region of class I viral fusion proteins is believed to initiate viral and cell membrane interactions and subsequent fusion. Although the SARS-CoV fusion protein heptad repeats have been well characterized, the fusion peptide has yet to be identified. Based on the conserved features of known viral fusion peptides and using Wimley and White interfacial hydrophobicity plots, we have identified two putative fusion peptides (SARS(WW-I) and SARS(WW-II)) at the N terminus of the SARS-CoV S2 subunit. Both peptides are hydrophobic and rich in alanine, glycine, and/or phenylalanine residues and contain a canonical fusion tripeptide along with a central proline residue. Only the SARS(WW-I) peptide strongly partitioned into the membranes of large unilamellar vesicles (LUV), adopting a beta-sheet structure. Likewise, only SARS(WW-I) induced the fusion of LUV and caused membrane leakage of vesicle contents at peptide/lipid ratios of 1:50 and 1:100, respectively. The activity of this synthetic peptide appeared to be dependent on its amino acid (aa) sequence, as scrambling the peptide rendered it unable to partition into LUV, assume a defined secondary structure, or induce both fusion and leakage of LUV. Based on the activity of SARS(WW-I), we propose that the hydrophobic stretch of 19 aa corresponding to residues 770 to 788 is a fusion peptide of the SARS-CoV S2 subunit.
Figures







Similar articles
- Characterization of a highly conserved domain within the severe acute respiratory syndrome coronavirus spike protein S2 domain with characteristics of a viral fusion peptide.Madu IG, Roth SL, Belouzard S, Whittaker GR.Madu IG, et al.J Virol. 2009 Aug;83(15):7411-21. doi: 10.1128/JVI.00079-09. Epub 2009 May 13.J Virol. 2009.PMID:19439480Free PMC article.
- Genetic analysis of the SARS-coronavirus spike glycoprotein functional domains involved in cell-surface expression and cell-to-cell fusion.Petit CM, Melancon JM, Chouljenko VN, Colgrove R, Farzan M, Knipe DM, Kousoulas KG.Petit CM, et al.Virology. 2005 Oct 25;341(2):215-30. doi: 10.1016/j.virol.2005.06.046. Epub 2005 Aug 15.Virology. 2005.PMID:16099010Free PMC article.
- Characterization of the heptad repeat regions, HR1 and HR2, and design of a fusion core structure model of the spike protein from severe acute respiratory syndrome (SARS) coronavirus.Xu Y, Zhu J, Liu Y, Lou Z, Yuan F, Liu Y, Cole DK, Ni L, Su N, Qin L, Li X, Bai Z, Bell JI, Pang H, Tien P, Gao GF, Rao Z.Xu Y, et al.Biochemistry. 2004 Nov 9;43(44):14064-71. doi: 10.1021/bi049101q.Biochemistry. 2004.PMID:15518555
- The spike protein of SARS-CoV--a target for vaccine and therapeutic development.Du L, He Y, Zhou Y, Liu S, Zheng BJ, Jiang S.Du L, et al.Nat Rev Microbiol. 2009 Mar;7(3):226-36. doi: 10.1038/nrmicro2090. Epub 2009 Feb 9.Nat Rev Microbiol. 2009.PMID:19198616Free PMC article.Review.
- The SARS-CoV S glycoprotein.Xiao X, Dimitrov DS.Xiao X, et al.Cell Mol Life Sci. 2004 Oct;61(19-20):2428-30. doi: 10.1007/s00018-004-4257-y.Cell Mol Life Sci. 2004.PMID:15526150Free PMC article.Review.
Cited by
- Identification of potential inhibitors of coronavirus hemagglutinin-esterase using molecular docking, molecular dynamics simulation and binding free energy calculation.Patel CN, Kumar SP, Pandya HA, Rawal RM.Patel CN, et al.Mol Divers. 2021 Feb;25(1):421-433. doi: 10.1007/s11030-020-10135-w. Epub 2020 Sep 29.Mol Divers. 2021.PMID:32996011Free PMC article.
- Membrane interaction and structure of the transmembrane domain of influenza hemagglutinin and its fusion peptide complex.Chang DK, Cheng SF, Kantchev EA, Lin CH, Liu YT.Chang DK, et al.BMC Biol. 2008 Jan 15;6:2. doi: 10.1186/1741-7007-6-2.BMC Biol. 2008.PMID:18197965Free PMC article.
- A proline insertion-deletion in the spike glycoprotein fusion peptide of mouse hepatitis virus strongly alters neuropathology.Singh M, Kishore A, Maity D, Sunanda P, Krishnarjuna B, Vappala S, Raghothama S, Kenyon LC, Pal D, Das Sarma J.Singh M, et al.J Biol Chem. 2019 May 17;294(20):8064-8087. doi: 10.1074/jbc.RA118.004418. Epub 2019 Mar 1.J Biol Chem. 2019.PMID:30824541Free PMC article.
- Cryo-EM structure of SARS-CoV-2 postfusion spike in membrane.Shi W, Cai Y, Zhu H, Peng H, Voyer J, Rits-Volloch S, Cao H, Mayer ML, Song K, Xu C, Lu J, Zhang J, Chen B.Shi W, et al.Nature. 2023 Jul;619(7969):403-409. doi: 10.1038/s41586-023-06273-4. Epub 2023 Jun 7.Nature. 2023.PMID:37285872
- Severe Acute Respiratory Syndrome Coronavirus 2 Spike Protein Based Novel Epitopes Induce Potent Immune Responsesin vivo and Inhibit Viral Replicationin vitro.Vishwakarma P, Yadav N, Rizvi ZA, Khan NA, Chiranjivi AK, Mani S, Bansal M, Dwivedi P, Shrivastava T, Kumar R, Awasthi A, Ahmed S, Samal S.Vishwakarma P, et al.Front Immunol. 2021 Mar 26;12:613045. doi: 10.3389/fimmu.2021.613045. eCollection 2021.Front Immunol. 2021.PMID:33841395Free PMC article.
References
- Agirre, A., C. Flach, F. M. Goni, R. Mendelsohn, J. M. Valpuesta, F. Wu, and J. L. Nieva. 2000. Interactions of the HIV-1 fusion peptide with large unilamellar vesicles and monolayers. A cryo-TEM and spectroscopic study. Biochim. Biophys. Acta 1467:153-164. - PubMed
- Blumenthal, R., M. J. Clague, S. R. Durell, and R. M. Epand. 2003. Membrane fusion. Chem. Rev. 103:53-69. - PubMed
Publication types
MeSH terms
Substances
Related information
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Miscellaneous