Identification and characterization of the putative fusion peptide of the severe acute respiratory syndrome-associated coronavirus spike protein
- PMID:15890958
- PMCID: PMC1112137
- DOI: 10.1128/JVI.79.11.7195-7206.2005
Identification and characterization of the putative fusion peptide of the severe acute respiratory syndrome-associated coronavirus spike protein
Abstract
Severe acute respiratory syndrome-associated coronavirus (SARS-CoV) is a newly identified member of the family Coronaviridae and poses a serious public health threat. Recent studies indicated that the SARS-CoV viral spike glycoprotein is a class I viral fusion protein. A fusion peptide present at the N-terminal region of class I viral fusion proteins is believed to initiate viral and cell membrane interactions and subsequent fusion. Although the SARS-CoV fusion protein heptad repeats have been well characterized, the fusion peptide has yet to be identified. Based on the conserved features of known viral fusion peptides and using Wimley and White interfacial hydrophobicity plots, we have identified two putative fusion peptides (SARS(WW-I) and SARS(WW-II)) at the N terminus of the SARS-CoV S2 subunit. Both peptides are hydrophobic and rich in alanine, glycine, and/or phenylalanine residues and contain a canonical fusion tripeptide along with a central proline residue. Only the SARS(WW-I) peptide strongly partitioned into the membranes of large unilamellar vesicles (LUV), adopting a beta-sheet structure. Likewise, only SARS(WW-I) induced the fusion of LUV and caused membrane leakage of vesicle contents at peptide/lipid ratios of 1:50 and 1:100, respectively. The activity of this synthetic peptide appeared to be dependent on its amino acid (aa) sequence, as scrambling the peptide rendered it unable to partition into LUV, assume a defined secondary structure, or induce both fusion and leakage of LUV. Based on the activity of SARS(WW-I), we propose that the hydrophobic stretch of 19 aa corresponding to residues 770 to 788 is a fusion peptide of the SARS-CoV S2 subunit.
Figures







Similar articles
- Characterization of a highly conserved domain within the severe acute respiratory syndrome coronavirus spike protein S2 domain with characteristics of a viral fusion peptide.Madu IG, Roth SL, Belouzard S, Whittaker GR.Madu IG, et al.J Virol. 2009 Aug;83(15):7411-21. doi: 10.1128/JVI.00079-09. Epub 2009 May 13.J Virol. 2009.PMID:19439480Free PMC article.
- Genetic analysis of the SARS-coronavirus spike glycoprotein functional domains involved in cell-surface expression and cell-to-cell fusion.Petit CM, Melancon JM, Chouljenko VN, Colgrove R, Farzan M, Knipe DM, Kousoulas KG.Petit CM, et al.Virology. 2005 Oct 25;341(2):215-30. doi: 10.1016/j.virol.2005.06.046. Epub 2005 Aug 15.Virology. 2005.PMID:16099010Free PMC article.
- Characterization of the heptad repeat regions, HR1 and HR2, and design of a fusion core structure model of the spike protein from severe acute respiratory syndrome (SARS) coronavirus.Xu Y, Zhu J, Liu Y, Lou Z, Yuan F, Liu Y, Cole DK, Ni L, Su N, Qin L, Li X, Bai Z, Bell JI, Pang H, Tien P, Gao GF, Rao Z.Xu Y, et al.Biochemistry. 2004 Nov 9;43(44):14064-71. doi: 10.1021/bi049101q.Biochemistry. 2004.PMID:15518555
- The spike protein of SARS-CoV--a target for vaccine and therapeutic development.Du L, He Y, Zhou Y, Liu S, Zheng BJ, Jiang S.Du L, et al.Nat Rev Microbiol. 2009 Mar;7(3):226-36. doi: 10.1038/nrmicro2090. Epub 2009 Feb 9.Nat Rev Microbiol. 2009.PMID:19198616Free PMC article.Review.
- The SARS-CoV S glycoprotein.Xiao X, Dimitrov DS.Xiao X, et al.Cell Mol Life Sci. 2004 Oct;61(19-20):2428-30. doi: 10.1007/s00018-004-4257-y.Cell Mol Life Sci. 2004.PMID:15526150Free PMC article.Review.
Cited by
- Identification of the Fusion Peptide-Containing Region in Betacoronavirus Spike Glycoproteins.Ou X, Zheng W, Shan Y, Mu Z, Dominguez SR, Holmes KV, Qian Z.Ou X, et al.J Virol. 2016 May 27;90(12):5586-5600. doi: 10.1128/JVI.00015-16. Print 2016 Jun 15.J Virol. 2016.PMID:27030273Free PMC article.
- Protective Immunity against SARS Subunit Vaccine Candidates Based on Spike Protein: Lessons for Coronavirus Vaccine Development.Khalaj-Hedayati A.Khalaj-Hedayati A.J Immunol Res. 2020 Jul 18;2020:7201752. doi: 10.1155/2020/7201752. eCollection 2020.J Immunol Res. 2020.PMID:32695833Free PMC article.Review.
- Effect of Disulfide Bridge on the Binding of SARS-CoV-2 Fusion Peptide to Cell Membrane: A Coarse-Grained Study.Shen H, Wu Z.Shen H, et al.ACS Omega. 2022 Oct 6;7(41):36762-36775. doi: 10.1021/acsomega.2c05079. eCollection 2022 Oct 18.ACS Omega. 2022.PMID:36278087Free PMC article.
- Supramolecular Architecture of the Coronavirus Particle.Neuman BW, Buchmeier MJ.Neuman BW, et al.Adv Virus Res. 2016;96:1-27. doi: 10.1016/bs.aivir.2016.08.005. Epub 2016 Sep 15.Adv Virus Res. 2016.PMID:27712621Free PMC article.Review.
- Integrative structural studies of the SARS-CoV-2 spike protein during the fusion process (2022).Miner JC, Fenimore PW, Fischer WM, McMahon BH, Sanbonmatsu KY, Tung CS.Miner JC, et al.Curr Res Struct Biol. 2022;4:220-230. doi: 10.1016/j.crstbi.2022.06.004. Epub 2022 Jun 23.Curr Res Struct Biol. 2022.PMID:35765663Free PMC article.
References
- Agirre, A., C. Flach, F. M. Goni, R. Mendelsohn, J. M. Valpuesta, F. Wu, and J. L. Nieva. 2000. Interactions of the HIV-1 fusion peptide with large unilamellar vesicles and monolayers. A cryo-TEM and spectroscopic study. Biochim. Biophys. Acta 1467:153-164. - PubMed
- Blumenthal, R., M. J. Clague, S. R. Durell, and R. M. Epand. 2003. Membrane fusion. Chem. Rev. 103:53-69. - PubMed
Publication types
MeSH terms
Substances
Related information
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Miscellaneous