Nicotine-induced antinociception, rewarding effects, and physical dependence are decreased in mice lacking the preproenkephalin gene
- PMID:15689546
- PMCID: PMC6725961
- DOI: 10.1523/JNEUROSCI.3008-04.2005
Nicotine-induced antinociception, rewarding effects, and physical dependence are decreased in mice lacking the preproenkephalin gene
Abstract
It has been shown previously that the endogenous opioid system may be involved in the behavioral effects of nicotine. In the present study, the participation of endogenous enkephalins on nicotine responses has been investigated by using preproenkephalin knock-out mice. Acute nicotine-induced hypolocomotion remained unaffected in these mice. In contrast, antinociception elicited in the tail-immersion and hot-plate tests by acute nicotine administration was reduced in mutant animals. The rewarding properties of nicotine were then investigated using the place-conditioning paradigm. Nicotine induced a conditioned place preference in wild-type animals, but this effect was absent in knock-out mice. Accordingly, in vivo microdialysis studies revealed that the enhancement in dopamine extracellular levels in the nucleus accumbens induced by nicotine was also reduced in preproenkephalin-deficient mice. Finally, the somatic expression of the nicotine withdrawal syndrome precipitated in nicotine-dependent mice by mecamylamine was significantly attenuated in mutant animals. In summary, the present results indicate that endogenous opioid peptides derived from preproenkephalin are involved in the antinociceptive and rewarding properties of nicotine and participate in the expression of physical nicotine dependence.
Figures








Similar articles
- Attenuation of nicotine-induced antinociception, rewarding effects, and dependence in mu-opioid receptor knock-out mice.Berrendero F, Kieffer BL, Maldonado R.Berrendero F, et al.J Neurosci. 2002 Dec 15;22(24):10935-40. doi: 10.1523/JNEUROSCI.22-24-10935.2002.J Neurosci. 2002.PMID:12486188Free PMC article.
- Nicotine anxiogenic and rewarding effects are decreased in mice lacking beta-endorphin.Trigo JM, Zimmer A, Maldonado R.Trigo JM, et al.Neuropharmacology. 2009 Jun;56(8):1147-53. doi: 10.1016/j.neuropharm.2009.03.013. Epub 2009 Apr 17.Neuropharmacology. 2009.PMID:19376143Free PMC article.
- Attenuation of nicotine-induced rewarding effects in A2A knockout mice.Castañé A, Soria G, Ledent C, Maldonado R, Valverde O.Castañé A, et al.Neuropharmacology. 2006 Sep;51(3):631-40. doi: 10.1016/j.neuropharm.2006.05.005. Epub 2006 Jun 21.Neuropharmacology. 2006.PMID:16793068
- [Development of physical dependence on nicotine and endogenous opioid system--participation of α7 nicotinic acetylcholine receptor].Kishioka S, Kiguchi N, Kobayashi Y, Saika F, Yamamoto C.Kishioka S, et al.Nihon Arukoru Yakubutsu Igakkai Zasshi. 2014 Oct;49(5):227-37.Nihon Arukoru Yakubutsu Igakkai Zasshi. 2014.PMID:25651617Review.Japanese.
- Nicotine and endogenous opioids: neurochemical and pharmacological evidence.Hadjiconstantinou M, Neff NH.Hadjiconstantinou M, et al.Neuropharmacology. 2011 Jun;60(7-8):1209-20. doi: 10.1016/j.neuropharm.2010.11.010. Epub 2010 Nov 22.Neuropharmacology. 2011.PMID:21108953Review.
Cited by
- Tobacco/nicotine and endogenous brain opioids.Xue Y, Domino EF.Xue Y, et al.Prog Neuropsychopharmacol Biol Psychiatry. 2008 Jul 1;32(5):1131-8. doi: 10.1016/j.pnpbp.2007.12.012. Epub 2007 Dec 23.Prog Neuropsychopharmacol Biol Psychiatry. 2008.PMID:18215788Free PMC article.Review.
- Crosstalk between Opioid and Anti-Opioid Systems: An Overview and Its Possible Therapeutic Significance.Gibula-Tarlowska E, Kotlinska JH.Gibula-Tarlowska E, et al.Biomolecules. 2020 Sep 28;10(10):1376. doi: 10.3390/biom10101376.Biomolecules. 2020.PMID:32998249Free PMC article.Review.
- Effect of nicotine on cholesterol gallstone formation in C57BL/6J mice fed on a lithogenic diet.Gao Q, Bi P, Mi Q, Guan Y, Jiang J, Li X, Yang B.Gao Q, et al.Exp Ther Med. 2023 Jan 3;25(2):84. doi: 10.3892/etm.2023.11783. eCollection 2023 Feb.Exp Ther Med. 2023.PMID:36684657Free PMC article.
- Effects of nicotine on homeostatic and hedonic components of food intake.Stojakovic A, Espinosa EP, Farhad OT, Lutfy K.Stojakovic A, et al.J Endocrinol. 2017 Oct;235(1):R13-R31. doi: 10.1530/JOE-17-0166.J Endocrinol. 2017.PMID:28814527Free PMC article.Review.
- Reward processing by the opioid system in the brain.Le Merrer J, Becker JA, Befort K, Kieffer BL.Le Merrer J, et al.Physiol Rev. 2009 Oct;89(4):1379-412. doi: 10.1152/physrev.00005.2009.Physiol Rev. 2009.PMID:19789384Free PMC article.Review.
References
- Adams ML, Cicero TJ (1998) Nitric oxide mediates mecamylamine- and naloxone-precipitated nicotine withdrawal. Eur J Pharmacol 345: R1-R2. - PubMed
- Bergevin A, Girardot D, Bourque MJ, Trudeau LE (2002) Presynaptic μ-opioid receptors regulate a late step of the secretory process in rat ventral tegmental area GABAergic neurons. Neuropharmacology 42: 1065-1078. - PubMed
- Carboni E, Bortone L, Giua C, Di Chiara G (2000) Dissociation of physical abstinence signs from changes in extracellular dopamine in the nucleus accumbens and in the prefrontal cortex of nicotine dependent rats. Drug Alcohol Depend 58: 93-102. - PubMed
- Castañé A, Valjent E, Ledent C, Parmentier M, Maldonado R, Valverde O (2002) Lack of CB1 cannabinoid receptors modifies nicotine behavioural responses, but not nicotine abstinence. Neuropharmacology 43: 857-867. - PubMed
Publication types
MeSH terms
Substances
Related information
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases