Analysis of the Piv recombinase-related gene family of Neisseria gonorrhoeae
- PMID:15687191
- PMCID: PMC545610
- DOI: 10.1128/JB.187.4.1276-1286.2005
Analysis of the Piv recombinase-related gene family of Neisseria gonorrhoeae
Abstract
Neisseria gonorrhoeae (the gonococcus) is an obligate human pathogen and the causative agent of the disease gonorrhea. The gonococcal pilus undergoes antigenic variation through high-frequency recombination events between unexpressed pilS silent copies and the pilin expression locus pilE. The machinery involved in pilin antigenic variation identified to date is composed primarily of genes involved in homologous recombination. However, a number of characteristics of antigenic variation suggest that one or more recombinases, in addition to the homologous recombination machinery, may be involved in mediating sequence changes at pilE. Previous work has identified several genes in the gonococcus with significant identity to the pilin inversion gene (piv) from Moraxella species and transposases of the IS110 family of insertion elements. These genes were candidates for a recombinase system involved in pilin antigenic variation. We have named these genes irg for invertase-related gene family. In this work, we characterize these genes and demonstrate that the irg genes do not complement for Moraxella lacunata Piv invertase or IS492 MooV transposase activities. Moreover, by inactivation of all eight gene copies and overexpression of one gene copy, we conclusively show that these recombinases are not involved in gonococcal pilin variation, DNA transformation, or DNA repair. We propose that the irg genes encode transposases for two different IS110-related elements given the names ISNgo2 and ISNgo3. ISNgo2 is located at multiple loci on the chromosome of N. gonorrhoeae, and ISNgo3 is found in single and duplicate copies in the N. gonorrhoeae and Neisseria meningitidis genomes, respectively.
Figures







Similar articles
- Antigenic variation of gonococcal pilin expression in vivo: analysis of the strain FA1090 pilin repertoire and identification of the pilS gene copies recombining with pilE during experimental human infection.Hamrick TS, Dempsey JAF, Cohen MS, Cannon JG.Hamrick TS, et al.Microbiology (Reading). 2001 Apr;147(Pt 4):839-849. doi: 10.1099/00221287-147-4-839.Microbiology (Reading). 2001.PMID:11283280
- A genetic screen identifies genes and sites involved in pilin antigenic variation in Neisseria gonorrhoeae.Sechman EV, Rohrer MS, Seifert HS.Sechman EV, et al.Mol Microbiol. 2005 Jul;57(2):468-83. doi: 10.1111/j.1365-2958.2005.04657.x.Mol Microbiol. 2005.PMID:15978078
- Inversion of Moraxella lacunata type 4 pilin gene sequences by a Neisseria gonorrhoeae site-specific recombinase.Rozsa FW, Meyer TF, Fussenegger M.Rozsa FW, et al.J Bacteriol. 1997 Apr;179(7):2382-8. doi: 10.1128/jb.179.7.2382-2388.1997.J Bacteriol. 1997.PMID:9079926Free PMC article.
- Alternative model for Neisseria gonorrhoeae pilin variation.Seifert HS, Ajioka R, So M.Seifert HS, et al.Vaccine. 1988 Apr;6(2):107-9. doi: 10.1016/s0264-410x(88)80009-4.Vaccine. 1988.PMID:2898841Review.
- Questions about gonococcal pilus phase- and antigenic variation.Seifert HS.Seifert HS.Mol Microbiol. 1996 Aug;21(3):433-40. doi: 10.1111/j.1365-2958.1996.tb02552.x.Mol Microbiol. 1996.PMID:8866467Review.
Cited by
- Sequence features contributing to chromosomal rearrangements in Neisseria gonorrhoeae.Spencer-Smith R, Varkey EM, Fielder MD, Snyder LA.Spencer-Smith R, et al.PLoS One. 2012;7(9):e46023. doi: 10.1371/journal.pone.0046023. Epub 2012 Sep 24.PLoS One. 2012.PMID:23029370Free PMC article.
- Whole-genome comparison of disease and carriage strains provides insights into virulence evolution in Neisseria meningitidis.Schoen C, Blom J, Claus H, Schramm-Glück A, Brandt P, Müller T, Goesmann A, Joseph B, Konietzny S, Kurzai O, Schmitt C, Friedrich T, Linke B, Vogel U, Frosch M.Schoen C, et al.Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3473-8. doi: 10.1073/pnas.0800151105. Epub 2008 Feb 27.Proc Natl Acad Sci U S A. 2008.PMID:18305155Free PMC article.
- Opportunity and means: horizontal gene transfer from the human host to a bacterial pathogen.Anderson MT, Seifert HS.Anderson MT, et al.mBio. 2011 Feb 15;2(1):e00005-11. doi: 10.1128/mBio.00005-11. Print 2011.mBio. 2011.PMID:21325040Free PMC article.
- A strain-specific catalase mutation and mutation of the metal-binding transporter gene mntC attenuate Neisseria gonorrhoeae in vivo but not by increasing susceptibility to oxidative killing by phagocytes.Wu H, Soler-García AA, Jerse AE.Wu H, et al.Infect Immun. 2009 Mar;77(3):1091-102. doi: 10.1128/IAI.00825-08. Epub 2008 Dec 29.Infect Immun. 2009.PMID:19114548Free PMC article.
- MpeR regulates the mtr efflux locus in Neisseria gonorrhoeae and modulates antimicrobial resistance by an iron-responsive mechanism.Mercante AD, Jackson L, Johnson PJ, Stringer VA, Dyer DW, Shafer WM.Mercante AD, et al.Antimicrob Agents Chemother. 2012 Mar;56(3):1491-501. doi: 10.1128/AAC.06112-11. Epub 2012 Jan 3.Antimicrob Agents Chemother. 2012.PMID:22214775Free PMC article.
References
- Carrick, C. S., J. A. Fyfe, and J. K. Davies. 1998. Neisseria gonorrhoeae contains multiple copies of a gene that may encode a site-specific recombinase and is associated with DNA rearrangements. Gene 220:21-29. - PubMed
- Chandler, M., and J. Mahillon. 2002. Insertion sequences revisited, p. 305-366. In N. L. Craig, R. Craigie, M. Gellert, and A. M. Lambowitz (ed.), Mobile DNA II. ASM Press, Washington, D.C.
Publication types
MeSH terms
Substances
Related information
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources