Surviving heat shock: control strategies for robustness and performance
- PMID:15668395
- PMCID: PMC549435
- DOI: 10.1073/pnas.0403510102
Surviving heat shock: control strategies for robustness and performance
Abstract
Molecular biology studies the cause-and-effect relationships among microscopic processes initiated by individual molecules within a cell and observes their macroscopic phenotypic effects on cells and organisms. These studies provide a wealth of information about the underlying networks and pathways responsible for the basic functionality and robustness of biological systems. At the same time, these studies create exciting opportunities for the development of quantitative and predictive models that connect the mechanism to its phenotype then examine various modular structures and the range of their dynamical behavior. The use of such models enables a deeper understanding of the design principles underlying biological organization and makes their reverse engineering and manipulation both possible and tractable The heat shock response presents an interesting mechanism where such an endeavor is possible. Using a model of heat shock, we extract the design motifs in the system and justify their existence in terms of various performance objectives. We also offer a modular decomposition that parallels that of traditional engineering control architectures.
Figures






Comment in
- Understanding biology by reverse engineering the control.Tomlin CJ, Axelrod JD.Tomlin CJ, et al.Proc Natl Acad Sci U S A. 2005 Mar 22;102(12):4219-20. doi: 10.1073/pnas.0500276102. Epub 2005 Mar 14.Proc Natl Acad Sci U S A. 2005.PMID:15767568Free PMC article.No abstract available.
Similar articles
- Reverse engineering: the architecture of biological networks.Khammash M.Khammash M.Biotechniques. 2008 Mar;44(3):323-9. doi: 10.2144/000112772.Biotechniques. 2008.PMID:18361784
- Module-based analysis of robustness tradeoffs in the heat shock response system.Kurata H, El-Samad H, Iwasaki R, Ohtake H, Doyle JC, Grigorova I, Gross CA, Khammash M.Kurata H, et al.PLoS Comput Biol. 2006 Jul 28;2(7):e59. doi: 10.1371/journal.pcbi.0020059. Epub 2006 Apr 13.PLoS Comput Biol. 2006.PMID:16863396Free PMC article.
- Understanding biology by reverse engineering the control.Tomlin CJ, Axelrod JD.Tomlin CJ, et al.Proc Natl Acad Sci U S A. 2005 Mar 22;102(12):4219-20. doi: 10.1073/pnas.0500276102. Epub 2005 Mar 14.Proc Natl Acad Sci U S A. 2005.PMID:15767568Free PMC article.No abstract available.
- Regulation of the heat-shock response.Yura T, Nakahigashi K.Yura T, et al.Curr Opin Microbiol. 1999 Apr;2(2):153-8. doi: 10.1016/S1369-5274(99)80027-7.Curr Opin Microbiol. 1999.PMID:10322172Review.
- [Regulation of Escherichia coli heat shock response].Liberek K.Liberek K.Postepy Biochem. 1995;41(2):94-102.Postepy Biochem. 1995.PMID:7479445Review.Polish.No abstract available.
Cited by
- Dynamics and design principles of a basic regulatory architecture controlling metabolic pathways.Chin CS, Chubukov V, Jolly ER, DeRisi J, Li H.Chin CS, et al.PLoS Biol. 2008 Jun 17;6(6):e146. doi: 10.1371/journal.pbio.0060146.PLoS Biol. 2008.PMID:18563967Free PMC article.
- Integrated TORC1 and PKA signaling control the temporal activation of glucose-induced gene expression in yeast.Kunkel J, Luo X, Capaldi AP.Kunkel J, et al.Nat Commun. 2019 Aug 8;10(1):3558. doi: 10.1038/s41467-019-11540-y.Nat Commun. 2019.PMID:31395866Free PMC article.
- Sensing the heat stress by Mammalian cells.Cates J, Graham GC, Omattage N, Pavesich E, Setliff I, Shaw J, Smith CL, Lipan O.Cates J, et al.BMC Biophys. 2011 Aug 11;4:16. doi: 10.1186/2046-1682-4-16.BMC Biophys. 2011.PMID:21834999Free PMC article.
- Distributing tasks via multiple input pathways increases cellular survival in stress.Granados AA, Crane MM, Montano-Gutierrez LF, Tanaka RJ, Voliotis M, Swain PS.Granados AA, et al.Elife. 2017 May 17;6:e21415. doi: 10.7554/eLife.21415.Elife. 2017.PMID:28513433Free PMC article.
- Sequestration of gene products by decoys enhances precision in the timing of intracellular events.Biswas K, Dey S, Singh A.Biswas K, et al.Sci Rep. 2024 Nov 8;14(1):27199. doi: 10.1038/s41598-024-75505-y.Sci Rep. 2024.PMID:39516495Free PMC article.
References
- Hartwell, L. H., Hopfield, J., Leibler, S. & Murray, A. W. (1999) Nature 81, C47–C52. - PubMed
- Csete, M. & Doyle, J. C. (2002) Science 295, 1664–1669. - PubMed
- Craig, E. A. (1985) Crit. Rev. Biochem. 18, 239–280. - PubMed
- Gross, C. A. (1996) in Escherichia coli and Salmonella: Cellular and Molecular Biology, eds. Neidhart, F. C., Curtis, R. I., Ingraham, J. L., Lin, C. C., Low, K. B., Magasnik, B., Reznikoff, W. S., Riley, M., Schaechter, M. & Umbarger, H. E. (Am. Soc. Microbiol., Washington, DC), pp. 1384–1394.
- Straus, D. B., Walter, W. A. & Gross, C. A. (1990) Genes Dev. 4, 2202–2209. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources