The use of gold nanoparticles to enhance radiotherapy in mice
- PMID:15509078
- DOI: 10.1088/0031-9155/49/18/n03
The use of gold nanoparticles to enhance radiotherapy in mice
Abstract
Mice bearing subcutaneous EMT-6 mammary carcinomas received a single intravenous injection of 1.9 nm diameter gold particles (up to 2.7 g Au/kg body weight), which elevated concentrations of gold to 7 mg Au/g in tumours. Tumour-to-normal-tissue gold concentration ratios remained approximately 8:1 during several minutes of 250 kVp x-ray therapy. One-year survival was 86% versus 20% with x-rays alone and 0% with gold alone. The increase in tumours safely ablated was dependent on the amount of gold injected. The gold nanoparticles were apparently non-toxic to mice and were largely cleared from the body through the kidneys. This novel use of small gold nanoparticles permitted achievement of the high metal content in tumours necessary for significant high-Z radioenhancement.
Similar articles
- Preferential tumour accumulation of gold nanoparticles, visualised by Magnetic Resonance Imaging: radiosensitisation studies in vivo and in vitro.Hébert EM, Debouttière PJ, Lepage M, Sanche L, Hunting DJ.Hébert EM, et al.Int J Radiat Biol. 2010 Aug;86(8):692-700. doi: 10.3109/09553001003746067.Int J Radiat Biol. 2010.PMID:20586540
- PEG-coated poly(lactic acid) nanoparticles for the delivery of hexadecafluoro zinc phthalocyanine to EMT-6 mouse mammary tumours.Allémann E, Brasseur N, Benrezzak O, Rousseau J, Kudrevich SV, Boyle RW, Leroux JC, Gurny R, Van Lier JE.Allémann E, et al.J Pharm Pharmacol. 1995 May;47(5):382-7. doi: 10.1111/j.2042-7158.1995.tb05815.x.J Pharm Pharmacol. 1995.PMID:7494187
- Biodistribution of colloidal gold nanoparticles after intravenous injection: Effects of PEGylation at the same particle size.Takeuchi I, Onaka H, Makino K.Takeuchi I, et al.Biomed Mater Eng. 2018;29(2):205-215. doi: 10.3233/BME-171723.Biomed Mater Eng. 2018.PMID:29457594
- Radiotherapy enhancement with gold nanoparticles.Hainfeld JF, Dilmanian FA, Slatkin DN, Smilowitz HM.Hainfeld JF, et al.J Pharm Pharmacol. 2008 Aug;60(8):977-85. doi: 10.1211/jpp.60.8.0005.J Pharm Pharmacol. 2008.PMID:18644191Review.
- Radiation nanomedicines for cancer treatment: a scientific journey and view of the landscape.Reilly RM, Georgiou CJ, Brown MK, Cai Z.Reilly RM, et al.EJNMMI Radiopharm Chem. 2024 May 4;9(1):37. doi: 10.1186/s41181-024-00266-y.EJNMMI Radiopharm Chem. 2024.PMID:38703297Free PMC article.Review.
Cited by
- Antibody Delivery into the Brain by Radiosensitizer Nanoparticles for Targeted Glioblastoma Therapy.Gal O, Betzer O, Rousso-Noori L, Sadan T, Motiei M, Nikitin M, Friedmann-Morvinski D, Popovtzer R, Popovtzer A.Gal O, et al.J Nanotheranostics. 2022 Sep 30;3(4):177-188. doi: 10.3390/jnt3040012.J Nanotheranostics. 2022.PMID:36324626Free PMC article.
- X-ray-computed tomography contrast agents.Lusic H, Grinstaff MW.Lusic H, et al.Chem Rev. 2013 Mar 13;113(3):1641-66. doi: 10.1021/cr200358s. Epub 2012 Dec 5.Chem Rev. 2013.PMID:23210836Free PMC article.Review.No abstract available.
- Key clinical beam parameters for nanoparticle-mediated radiation dose amplification.Detappe A, Kunjachan S, Drané P, Kotb S, Myronakis M, Biancur DE, Ireland T, Wagar M, Lux F, Tillement O, Berbeco R.Detappe A, et al.Sci Rep. 2016 Sep 23;6:34040. doi: 10.1038/srep34040.Sci Rep. 2016.PMID:27658637Free PMC article.
- MRI-guided monitoring of thermal dose and targeted drug delivery for cancer therapy.Fernando R, Downs J, Maples D, Ranjan A.Fernando R, et al.Pharm Res. 2013 Nov;30(11):2709-17. doi: 10.1007/s11095-013-1110-8. Epub 2013 Jun 19.Pharm Res. 2013.PMID:23780716Review.
- Microdosimetric Simulation of Gold-Nanoparticle-Enhanced Radiotherapy.Azarkin M, Kirakosyan M, Ryabov V.Azarkin M, et al.Int J Mol Sci. 2024 Sep 2;25(17):9525. doi: 10.3390/ijms25179525.Int J Mol Sci. 2024.PMID:39273472Free PMC article.
Publication types
MeSH terms
Substances
Related information
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources