Finishing the euchromatic sequence of the human genome
- PMID:15496913
- DOI: 10.1038/nature03001
Finishing the euchromatic sequence of the human genome
Abstract
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers approximately 99% of the euchromatic genome and is accurate to an error rate of approximately 1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human genome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead.
Comment in
- Human genome: end of the beginning.Stein LD.Stein LD.Nature. 2004 Oct 21;431(7011):915-6. doi: 10.1038/431915a.Nature. 2004.PMID:15496902No abstract available.
Similar articles
- Juxtacentromeric region of human chromosome 21: a boundary between centromeric heterochromatin and euchromatic chromosome arms.Brun ME, Ruault M, Ventura M, Roizès G, De Sario A.Brun ME, et al.Gene. 2003 Jul 17;312:41-50. doi: 10.1016/s0378-1119(03)00530-4.Gene. 2003.PMID:12909339
- The sequence of the human genome.Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA, Gocayne JD, Amanatides P, Ballew RM, Huson DH, Wortman JR, Zhang Q, Kodira CD, Zheng XH, Chen L, Skupski M, Subramanian G, Thomas PD, Zhang J, Gabor Miklos GL, Nelson C, Broder S, Clark AG, Nadeau J, McKusick VA, Zinder N, Levine AJ, Roberts RJ, Simon M, Slayman C, Hunkapiller M, Bolanos R, Delcher A, Dew I, Fasulo D, Flanigan M, Florea L, Halpern A, Hannenhalli S, Kravitz S, Levy S, Mobarry C, Reinert K, Remington K, Abu-Threideh J, Beasley E, Biddick K, Bonazzi V, Brandon R, Cargill M, Chandramouliswaran I, Charlab R, Chaturvedi K, Deng Z, Di Francesco V, Dunn P, Eilbeck K, Evangelista C, Gabrielian AE, Gan W, Ge W, Gong F, Gu Z, Guan P, Heiman TJ, Higgins ME, Ji RR, Ke Z, Ketchum KA, Lai Z, Lei Y, Li Z, Li J, Liang Y, Lin X, Lu F, Merkulov GV, Milshina N, Moore HM, Naik AK, Narayan VA, Neelam B, Nusskern D, Rusch DB, Salzberg S, Shao W, Shue B, Sun J, Wang Z, Wang A, Wang X, Wang J, Wei M, Wides R, Xiao C, Yan C, Yao A, Ye J, Zhan M, Zhang W, Zhang H, Zhao Q, Zheng L, Zhong F, Zhong W, Zhu S, Zhao S, Gilbert D, Baumhueter S, Spier G, Carter C, Cravchik A, Woodage T, Ali F, An H, A…See abstract for full author list ➔Venter JC, et al.Science. 2001 Feb 16;291(5507):1304-51. doi: 10.1126/science.1058040.Science. 2001.PMID:11181995
- DNA sequence and analysis of human chromosome 9.Humphray SJ, Oliver K, Hunt AR, Plumb RW, Loveland JE, Howe KL, Andrews TD, Searle S, Hunt SE, Scott CE, Jones MC, Ainscough R, Almeida JP, Ambrose KD, Ashwell RI, Babbage AK, Babbage S, Bagguley CL, Bailey J, Banerjee R, Barker DJ, Barlow KF, Bates K, Beasley H, Beasley O, Bird CP, Bray-Allen S, Brown AJ, Brown JY, Burford D, Burrill W, Burton J, Carder C, Carter NP, Chapman JC, Chen Y, Clarke G, Clark SY, Clee CM, Clegg S, Collier RE, Corby N, Crosier M, Cummings AT, Davies J, Dhami P, Dunn M, Dutta I, Dyer LW, Earthrowl ME, Faulkner L, Fleming CJ, Frankish A, Frankland JA, French L, Fricker DG, Garner P, Garnett J, Ghori J, Gilbert JG, Glison C, Grafham DV, Gribble S, Griffiths C, Griffiths-Jones S, Grocock R, Guy J, Hall RE, Hammond S, Harley JL, Harrison ES, Hart EA, Heath PD, Henderson CD, Hopkins BL, Howard PJ, Howden PJ, Huckle E, Johnson C, Johnson D, Joy AA, Kay M, Keenan S, Kershaw JK, Kimberley AM, King A, Knights A, Laird GK, Langford C, Lawlor S, Leongamornlert DA, Leversha M, Lloyd C, Lloyd DM, Lovell J, Martin S, Mashreghi-Mohammadi M, Matthews L, McLaren S, McLay KE, McMurray A, Milne S, Nickerson T, Nisbett J, Nordsiek G, Pearce AV, Peck AI, Porter KM, Pandian R,…See abstract for full author list ➔Humphray SJ, et al.Nature. 2004 May 27;429(6990):369-74. doi: 10.1038/nature02465.Nature. 2004.PMID:15164053Free PMC article.
- [Finishing the euchromatic sequence of the human genome].Hattori M.Hattori M.Tanpakushitsu Kakusan Koso. 2005 Feb;50(2):162-8.Tanpakushitsu Kakusan Koso. 2005.PMID:15704464Review.Japanese.No abstract available.
- The human genome and its upcoming dynamics.Platzer M.Platzer M.Genome Dyn. 2006;2:1-16. doi: 10.1159/000095083.Genome Dyn. 2006.PMID:18753765Review.
Cited by
- High-throughput sequencing technologies.Reuter JA, Spacek DV, Snyder MP.Reuter JA, et al.Mol Cell. 2015 May 21;58(4):586-97. doi: 10.1016/j.molcel.2015.05.004.Mol Cell. 2015.PMID:26000844Free PMC article.Review.
- Antiseizure medication in early nervous system development. Ion channels and synaptic proteins as principal targets.Castro PA, Pinto-Borguero I, Yévenes GE, Moraga-Cid G, Fuentealba J.Castro PA, et al.Front Pharmacol. 2022 Oct 14;13:948412. doi: 10.3389/fphar.2022.948412. eCollection 2022.Front Pharmacol. 2022.PMID:36313347Free PMC article.Review.
- Host long noncoding RNAs in bacterial infections.Cheng Y, Liang Y, Tan X, Liu L.Cheng Y, et al.Front Immunol. 2024 Sep 2;15:1419782. doi: 10.3389/fimmu.2024.1419782. eCollection 2024.Front Immunol. 2024.PMID:39295861Free PMC article.Review.
- Multi-scale molecular photoacoustic tomography of gene expression.Cai X, Li L, Krumholz A, Guo Z, Erpelding TN, Zhang C, Zhang Y, Xia Y, Wang LV.Cai X, et al.PLoS One. 2012;7(8):e43999. doi: 10.1371/journal.pone.0043999. Epub 2012 Aug 27.PLoS One. 2012.PMID:22952846Free PMC article.
- The long non-coding RNACRNDE promotes osteosarcoma proliferation and migration by spongingmiR-136-5p/MRP9 axis.Ding X, Zhang Y, Liang J, Yin J, Akbar N, Miguel V, Zhou Y.Ding X, et al.Ann Transl Med. 2022 Aug;10(15):835. doi: 10.21037/atm-22-3602.Ann Transl Med. 2022.PMID:36034978Free PMC article.
Publication types
MeSH terms
Substances
Associated data
- Actions
- Actions
Related information
LinkOut - more resources
Full Text Sources
Other Literature Sources