Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

HighWire full text link HighWire Free PMC article
Full text links

Actions

.2004 Sep;41(9):679-83.
doi: 10.1136/jmg.2004.019000.

A splice site mutation in the methyltransferase gene FTSJ1 in Xp11.23 is associated with non-syndromic mental retardation in a large Belgian family (MRX9)

Affiliations

A splice site mutation in the methyltransferase gene FTSJ1 in Xp11.23 is associated with non-syndromic mental retardation in a large Belgian family (MRX9)

J Ramser et al. J Med Genet.2004 Sep.

Abstract

Mental retardation is the most frequent cause of serious handicap in children and young adults. The underlying causes of this heterogeneous condition are both acquired and genetically based. A recently performed refinement of the linkage interval in a large Belgian family with mild to severe non-syndromic X linked mental retardation, classified as MRX9, revealed a candidate region of 11.3 Mb between markers DXS228 and DXS1204 on the short arm of the X chromosome. In order to identify the underlying disease gene in the MRX9 family, we established a gene catalogue for the candidate region and performed comprehensive mutation analysis by direct sequencing. A human homologue of the bacterial 23S rRNA methyltransferase Fstj, the FTSJ1 gene, is located within this region and displayed a sequence alteration in the conserved acceptor splice site of intron 3 (IVS3-2A>G) in all tested patients and carrier females of this family. In contrast, it was absent in all unaffected male family members tested. The mutation results in skipping of exon 4 and introduces a premature stop codon in exon 5, probably leading to a severely truncated protein. Our finding indicates that a protein, possibly associated with ribosomal stability, can be linked to X linked mental retardation (XLMR).

PubMed Disclaimer

Publication types

MeSH terms

Substances

Grants and funding

LinkOut - more resources

Full text links
HighWire full text link HighWire Free PMC article
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2026 Movatter.jp