Voltage imaging from dendrites of mitral cells: EPSP attenuation and spike trigger zones
- PMID:15282273
- PMCID: PMC6729725
- DOI: 10.1523/JNEUROSCI.0307-04.2004
Voltage imaging from dendrites of mitral cells: EPSP attenuation and spike trigger zones
Abstract
To obtain a more complete description of individual neurons, it is necessary to complement the electrical patch pipette measurements with technologies that permit a massive parallel recording from many sites on neuronal processes. This can be achieved by using voltage imaging with intracellular dyes. With this approach, we investigated the functional structure of a mitral cell, the principal output neuron in the rat olfactory bulb. The most significant finding concerns the characteristics of EPSPs at the synaptic sites and surprisingly small attenuation along the trunk of the primary dendrite. Also, the experiments were performed to determine the number, location, and stability of spike trigger zones, the excitability of terminal dendritic branches, and the pattern and nature of spike initiation and propagation in the primary and secondary dendrites. The results show that optical data can be used to deduce the amplitude and shape of the EPSPs evoked by olfactory nerve stimulation at the site of origin (glomerular tuft) and to determine its attenuation along the entire length of the primary dendrite. This attenuation corresponds to an unusually large mean apparent "length constant" of the primary dendrite. Furthermore, the images of spike trigger zones showed that an action potential can be initiated in three different compartments of the mitral cell: the soma-axon region, the primary dendrite trunk, and the terminal dendritic tuft, which appears to be fully excitable. Finally, secondary dendrites clearly support the active propagation of action potentials.
Figures








Similar articles
- Imaging of spiking and subthreshold activity of mitral cells with voltage-sensitive dyes.Djurisić M, Zecević D.Djurisić M, et al.Ann N Y Acad Sci. 2005 Jun;1048:92-102. doi: 10.1196/annals.1342.009.Ann N Y Acad Sci. 2005.PMID:16154924
- Multiple modes of action potential initiation and propagation in mitral cell primary dendrite.Chen WR, Shen GY, Shepherd GM, Hines ML, Midtgaard J.Chen WR, et al.J Neurophysiol. 2002 Nov;88(5):2755-64. doi: 10.1152/jn.00057.2002.J Neurophysiol. 2002.PMID:12424310
- Functional structure of the mitral cell dendritic tuft in the rat olfactory bulb.Djurisic M, Popovic M, Carnevale N, Zecevic D.Djurisic M, et al.J Neurosci. 2008 Apr 9;28(15):4057-68. doi: 10.1523/JNEUROSCI.5296-07.2008.J Neurosci. 2008.PMID:18400905Free PMC article.
- Dendritic excitability and calcium signalling in the mitral cell distal glomerular tuft.Zhou Z, Xiong W, Zeng S, Xia A, Shepherd GM, Greer CA, Chen WR.Zhou Z, et al.Eur J Neurosci. 2006 Sep;24(6):1623-32. doi: 10.1111/j.1460-9568.2006.05076.x.Eur J Neurosci. 2006.PMID:17004926
- Forward and backward propagation of dendritic impulses and their synaptic control in mitral cells.Chen WR, Midtgaard J, Shepherd GM.Chen WR, et al.Science. 1997 Oct 17;278(5337):463-7. doi: 10.1126/science.278.5337.463.Science. 1997.PMID:9334305
Cited by
- Visualization and manipulation of neural activity in the developing vertebrate nervous system.Zhang J, Ackman JB, Dhande OS, Crair MC.Zhang J, et al.Front Mol Neurosci. 2011 Nov 18;4:43. doi: 10.3389/fnmol.2011.00043. eCollection 2011.Front Mol Neurosci. 2011.PMID:22121343Free PMC article.
- Action potentials initiate in the axon initial segment and propagate through axon collaterals reliably in cerebellar Purkinje neurons.Foust A, Popovic M, Zecevic D, McCormick DA.Foust A, et al.J Neurosci. 2010 May 19;30(20):6891-902. doi: 10.1523/JNEUROSCI.0552-10.2010.J Neurosci. 2010.PMID:20484631Free PMC article.
- Biophysical constraints on lateral inhibition in the olfactory bulb.McIntyre AB, Cleland TA.McIntyre AB, et al.J Neurophysiol. 2016 Jun 1;115(6):2937-49. doi: 10.1152/jn.00671.2015. Epub 2016 Mar 23.J Neurophysiol. 2016.PMID:27009162Free PMC article.
- Recent odor experience selectively modulates olfactory sensitivity across the glomerular output in the mouse olfactory bulb.Subramanian N, Leong LM, Boukani PSM, Storace DA.Subramanian N, et al.bioRxiv [Preprint]. 2024 Sep 23:2024.07.21.604478. doi: 10.1101/2024.07.21.604478.bioRxiv. 2024.Update in:Chem Senses. 2025 Jan 22;50:bjae045. doi: 10.1093/chemse/bjae045.PMID:39386559Free PMC article.Updated.Preprint.
- A compact multiphoton 3D imaging system for recording fast neuronal activity.Vucinić D, Sejnowski TJ.Vucinić D, et al.PLoS One. 2007 Aug 8;2(8):e699. doi: 10.1371/journal.pone.0000699.PLoS One. 2007.PMID:17684546Free PMC article.
References
- Andersen M, Hablitz JJ (1993) Local anesthetics block transient outward potassium currents in rat neocortical neurons. J Neurophysiol 69: 1966-1975. - PubMed
- Antic S, Major G, Zecevic D (1999) Fast optical recordings of membrane potential changes from dendrites of pyramidal neurons. J Neurophysiol 82: 1615-1621. - PubMed
- Armstrong CL, Gilly WF (1992) Access resistance and space clamp problems associated with whole-cell patch clamping. Methods Enzymol 207: 100-122. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases