Carbohydrate-binding modules: fine-tuning polysaccharide recognition
- PMID:15214846
- PMCID: PMC1133952
- DOI: 10.1042/BJ20040892
Carbohydrate-binding modules: fine-tuning polysaccharide recognition
Abstract
The enzymic degradation of insoluble polysaccharides is one of the most important reactions on earth. Despite this, glycoside hydrolases attack such polysaccharides relatively inefficiently as their target glycosidic bonds are often inaccessible to the active site of the appropriate enzymes. In order to overcome these problems, many of the glycoside hydrolases that utilize insoluble substrates are modular, comprising catalytic modules appended to one or more non-catalytic CBMs (carbohydrate-binding modules). CBMs promote the association of the enzyme with the substrate. In view of the central role that CBMs play in the enzymic hydrolysis of plant structural and storage polysaccharides, the ligand specificity displayed by these protein modules and the mechanism by which they recognize their target carbohydrates have received considerable attention since their discovery almost 20 years ago. In the last few years, CBM research has harnessed structural, functional and bioinformatic approaches to elucidate the molecular determinants that drive CBM-carbohydrate recognition. The present review summarizes the impact structural biology has had on our understanding of the mechanisms by which CBMs bind to their target ligands.
Figures








Similar articles
- Carbohydrate-binding domains: multiplicity of biological roles.Guillén D, Sánchez S, Rodríguez-Sanoja R.Guillén D, et al.Appl Microbiol Biotechnol. 2010 Feb;85(5):1241-9. doi: 10.1007/s00253-009-2331-y. Epub 2009 Nov 12.Appl Microbiol Biotechnol. 2010.PMID:19908036Review.
- Family 6 carbohydrate binding modules recognize the non-reducing end of beta-1,3-linked glucans by presenting a unique ligand binding surface.van Bueren AL, Morland C, Gilbert HJ, Boraston AB.van Bueren AL, et al.J Biol Chem. 2005 Jan 7;280(1):530-7. doi: 10.1074/jbc.M410113200. Epub 2004 Oct 22.J Biol Chem. 2005.PMID:15501830
- The family 6 carbohydrate-binding modules have coevolved with their appended catalytic modules toward similar substrate specificity.Michel G, Barbeyron T, Kloareg B, Czjzek M.Michel G, et al.Glycobiology. 2009 Jun;19(6):615-23. doi: 10.1093/glycob/cwp028. Epub 2009 Feb 24.Glycobiology. 2009.PMID:19240276
- A simple method for determining specificity of carbohydrate-binding modules for purified and crude insoluble polysaccharide substrates.Yaniv O, Jindou S, Frolow F, Lamed R, Bayer EA.Yaniv O, et al.Methods Mol Biol. 2012;908:101-7. doi: 10.1007/978-1-61779-956-3_10.Methods Mol Biol. 2012.PMID:22843393
- Advances in understanding the molecular basis of plant cell wall polysaccharide recognition by carbohydrate-binding modules.Gilbert HJ, Knox JP, Boraston AB.Gilbert HJ, et al.Curr Opin Struct Biol. 2013 Oct;23(5):669-77. doi: 10.1016/j.sbi.2013.05.005. Epub 2013 Jun 13.Curr Opin Struct Biol. 2013.PMID:23769966Review.
Cited by
- Functional diversity of three tandem C-terminal carbohydrate-binding modules of a β-mannanase.Møller MS, El Bouaballati S, Henrissat B, Svensson B.Møller MS, et al.J Biol Chem. 2021 Jan-Jun;296:100638. doi: 10.1016/j.jbc.2021.100638. Epub 2021 Apr 7.J Biol Chem. 2021.PMID:33838183Free PMC article.
- Comparative transcriptome analysis of two Cercospora sojina strains reveals differences in virulence under nitrogen starvation stress.Gu X, Yang S, Yang X, Yao L, Gao X, Zhang M, Liu W, Zhao H, Wang Q, Li Z, Li Z, Ding J.Gu X, et al.BMC Microbiol. 2020 Jun 16;20(1):166. doi: 10.1186/s12866-020-01853-0.BMC Microbiol. 2020.PMID:32546122Free PMC article.
- Structural insights into the affinity of Cel7A carbohydrate-binding module for lignin.Strobel KL, Pfeiffer KA, Blanch HW, Clark DS.Strobel KL, et al.J Biol Chem. 2015 Sep 11;290(37):22818-26. doi: 10.1074/jbc.M115.673467. Epub 2015 Jul 24.J Biol Chem. 2015.PMID:26209638Free PMC article.
- Genomic analysis of six new Geobacillus strains reveals highly conserved carbohydrate degradation architectures and strategies.Brumm PJ, De Maayer P, Mead DA, Cowan DA.Brumm PJ, et al.Front Microbiol. 2015 May 12;6:430. doi: 10.3389/fmicb.2015.00430. eCollection 2015.Front Microbiol. 2015.PMID:26029180Free PMC article.
- Active site and laminarin binding in glycoside hydrolase family 55.Bianchetti CM, Takasuka TE, Deutsch S, Udell HS, Yik EJ, Bergeman LF, Fox BG.Bianchetti CM, et al.J Biol Chem. 2015 May 8;290(19):11819-32. doi: 10.1074/jbc.M114.623579. Epub 2015 Mar 9.J Biol Chem. 2015.PMID:25752603Free PMC article.
References
- Van Tilbeurgh H., Tomme P., Claeyssens M., Bhikhabhai R., Pettersson G. Limited proteolysis of the cellobiohydrolase I from Trichoderma reesei. FEBS Lett. 1986;204:223–227.
- Tomme P., Van Tilbeurgh H., Pettersson G., Van Damme J., Vandekerckhove J., Knowles J., Teeri T., Claeyssens M. Studies of the cellulolytic system of Trichoderma reesei QM 9414: analysis of domain function in two cellobiohydrolases by limited proteolysis. Eur. J. Biochem. 1988;170:575–581. - PubMed
- Gilkes N. R., Warren R. A. J., Miller R. C., Jr, Kilburn D. G. Precise excision of the cellulose binding domains from two Cellulomonas fimi cellulases by a homologous protease and the effect on catalysis. J. Biol. Chem. 1988;263:10401–10407. - PubMed
- Boraston A. B., McLean B. W., Kormos J. M., Alam M., Gilkes N. R., Haynes C. A., Tomme P., Kilburn D. G., Warren R. A. J. Carbohydrate-binding modules: diversity of structure and function. In: Gilbert H. J., Davies G. J., Henrissat B., Svensson B., editors. Recent Advances in Carbohydrate Bioengineering. Cambridge: Royal Society of Chemistry; 1999. pp. 202–211.
- Coutinho P. M., Henrissat B. Carbohydrate-active enzymes: an integrated database approach. In: Gilbert H. J., Davies G. J., Henrissat B., Svensson B., editors. Recent Advances in Carbohydrate Bioengineering. Cambridge: Royal Society of Chemistry; 1999. pp. 3–12.
Publication types
MeSH terms
Substances
Related information
LinkOut - more resources
Full Text Sources
Other Literature Sources