Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Free PMC article
Full text links

Actions

.2004 Apr;10(4):653-7.
doi: 10.3201/eid1004.030517.

Ixodid and argasid tick species and west nile virus

Affiliations

Ixodid and argasid tick species and west nile virus

Charles Henderson Lawrie et al. Emerg Infect Dis.2004 Apr.

Abstract

Control of West Nile virus (WNV) can only be effective if the vectors and reservoirs of the virus are identified and controlled. Although mosquitoes are the primary vectors, WNV has repeatedly been isolated from ticks. Therefore, tick-borne transmission studies were performed with an ixodid (Ixodes ricinus) and an argasid tick species (Ornithodoros moubata). Both species became infected after feeding upon viremic hosts, but I. ricinus ticks were unable to maintain the virus. In contrast, O. moubata ticks were infected for at least 132 days, and the infection was maintained through molting and a second bloodmeal. Infected O. moubata ticks transmitted the virus to rodent hosts, albeit at a low level. Moreover, the virus was nonsystemically transmitted between infected and uninfected O. moubata ticks co-fed upon uninfected hosts. Although ticks are unlikely to play a major role in WNV transmission, our findings suggest that some species have the potential to act as reservoirs for the virus.

PubMed Disclaimer

References

    1. Lanciotti RS, Roehrig JT, Deubel V, Smith J, Parker M, Steele K, et al. Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern United States. Science. 1999;286:2333–7. 10.1126/science.286.5448.2333 - DOI - PubMed
    1. Centers for Disease Control and Prevention. Provisional surveillance summary of the West Nile virus epidemic—United States, January-November 2002. MMWR Morb Mortal Wkly Rep. 2002;51:1129–33. - PubMed
    1. Aiken L. Health Canada “nearly blindsided” by West Nile virus incidence. CMAJ. 2003;168:756.
    1. Monath TP, Heinz FX. Flaviviruses. In: Fields BN, Knipe DM, Howley PM, editors. Fields virology. New York: Lippincott-Raven; 1996. p. 961–1034.
    1. Centers for Disease Control and Prevention. West Nile virus—entomology [monograph on the Internet]. 2002. [cited 2004 Feb 11]. Available from:http://www.cdc.gov/ncidod/dvbid/westnile/mosquitospecies.htm

MeSH terms

LinkOut - more resources

Full text links
Free PMC article
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2026 Movatter.jp