Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Elsevier Science full text link Elsevier Science
Full text links

Actions

Review
.2004 Apr 19;490(1-3):177-86.
doi: 10.1016/j.ejphar.2004.02.055.

Hippocampal synaptic plasticity and glutamate receptor regulation: influences of diabetes mellitus

Affiliations
Review

Hippocampal synaptic plasticity and glutamate receptor regulation: influences of diabetes mellitus

Francois Trudeau et al. Eur J Pharmacol..

Abstract

Diabetes mellitus is an endocrine disorder of carbohydrate metabolism resulting primarily from inadequate insulin release (Type 1 insulin-dependent diabetes mellitus) or insulin insensitivity coupled with inadequate compensatory insulin release (Type 2 non-insulin-dependent diabetes mellitus). Previous studies involving behavioural and electrophysiological analysis indicate that diabetes mellitus induces cognitive impairment and defects of long-term potentiation in the hippocampus. Considered to be an important mechanism of learning and memory in mammals, long-term potentiation is known to require regulation of the glutamate receptor properties. According to many studies, defects of long-term potentiation in the hippocampus of diabetic animals are due to abnormal glutamate receptors. We review here the changes in glutamate receptors that may account for modifications of long-term potentiation in various models of diabetes mellitus. As glutamate receptors are also involved in the appearance of neurodegenerative states, we discuss the possibility that deficits in long-term potentiation during chronic diabetes might arise from dysfunction of the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors in early stages of the disease. This review addresses the possible role of hyperglycaemia and insulin in regulating these receptors.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources

Full text links
Elsevier Science full text link Elsevier Science
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp