Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Elsevier Science full text link Elsevier Science
Full text links

Actions

Review
.2004 Apr;43(5):527-42.
doi: 10.1016/j.toxicon.2004.02.008.

The multiple actions of black widow spider toxins and their selective use in neurosecretion studies

Affiliations
Review

The multiple actions of black widow spider toxins and their selective use in neurosecretion studies

Y A Ushkaryov et al. Toxicon.2004 Apr.

Abstract

The black widow spider venom contains several large protein toxins--latrotoxins--that are selectively targeted against different classes of animals: vertebrates, insects, and crustaceans. These toxins are synthesised as large precursors that undergo proteolytic processing and activation in the lumen of the venom gland. The mature latrotoxins demonstrate strong functional structure conservation and contain multiple ankyrin repeats, which mediate toxin oligomerisation. The three-dimensional structure has been determined for alpha-latrotoxin (alphaLTX), a representative venom component toxic to vertebrates. This reconstruction explains the mechanism of alphaLTX pore formation by showing that it forms tetrameric complexes, harbouring a central channel, and that it is able to insert into lipid membranes. All latrotoxins cause massive release of neurotransmitters from nerve terminals of respective animals after binding to specific neuronal receptors. A G protein-coupled receptor latrophilin and a single-transmembrane receptor neurexin have been identified as major high-affinity receptors for alphaLTX. Latrotoxins act by several Ca(2+)-dependent and -independent mechanisms based on pore formation and activation of receptors. Mutant recombinant alphaLTX that does not form pores has been used to dissect the multiple actions of this toxin. As a result, important insights have been gained into the receptor signalling and the role of intracellular Ca(2+) stores in the effect of alphaLTX.

PubMed Disclaimer

Publication types

MeSH terms

Substances

Grants and funding

LinkOut - more resources

Full text links
Elsevier Science full text link Elsevier Science
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2026 Movatter.jp