Biased distribution of DNA uptake sequences towards genome maintenance genes
- PMID:14960717
- PMCID: PMC373393
- DOI: 10.1093/nar/gkh255
Biased distribution of DNA uptake sequences towards genome maintenance genes
Abstract
Repeated sequence signatures are characteristic features of all genomic DNA. We have made a rigorous search for repeat genomic sequences in the human pathogens Neisseria meningitidis, Neisseria gonorrhoeae and Haemophilus influenzae and found that by far the most frequent 9-10mers residing within coding regions are the DNA uptake sequences (DUS) required for natural genetic transformation. More importantly, we found a significantly higher density of DUS within genes involved in DNA repair, recombination, restriction-modification and replication than in any other annotated gene group in these organisms. Pasteurella multocida also displayed high frequencies of a putative DUS identical to that previously identified in H.influenzae and with a skewed distribution towards genome maintenance genes, indicating that this bacterium might be transformation competent under certain conditions. These results imply that the high frequency of DUS in genome maintenance genes is conserved among phylogenetically divergent species and thus are of significant biological importance. Increased DUS density is expected to enhance DNA uptake and the over-representation of DUS in genome maintenance genes might reflect facilitated recovery of genome preserving functions. For example, transient and beneficial increase in genome instability can be allowed during pathogenesis simply through loss of antimutator genes, since these DUS-containing sequences will be preferentially recovered. Furthermore, uptake of such genes could provide a mechanism for facilitated recovery from DNA damage after genotoxic stress.
Figures


Similar articles
- Variations in gene organization and DNA uptake signal sequence in the folP region between commensal and pathogenic Neisseria species.Qvarnstrom Y, Swedberg G.Qvarnstrom Y, et al.BMC Microbiol. 2006 Feb 17;6:11. doi: 10.1186/1471-2180-6-11.BMC Microbiol. 2006.PMID:16503987Free PMC article.
- Genome dynamics of short oligonucleotides: the example of bacterial DNA uptake enhancing sequences.Bakkali M.Bakkali M.PLoS One. 2007 Aug 15;2(8):e741. doi: 10.1371/journal.pone.0000741.PLoS One. 2007.PMID:17710141Free PMC article.
- The repertoire of minimal mobile elements in the Neisseria species and evidence that these are involved in horizontal gene transfer in other bacteria.Snyder LA, McGowan S, Rogers M, Duro E, O'Farrell E, Saunders NJ.Snyder LA, et al.Mol Biol Evol. 2007 Dec;24(12):2802-15. doi: 10.1093/molbev/msm215. Epub 2007 Oct 5.Mol Biol Evol. 2007.PMID:17921485
- Identification and analysis of essential genes in Haemophilus influenzae.Wong SM, Akerley BJ.Wong SM, et al.Methods Mol Biol. 2008;416:27-44. doi: 10.1007/978-1-59745-321-9_3.Methods Mol Biol. 2008.PMID:18392959Review.
- [Information from complete bacterial genome sequences].Ogasawara N.Ogasawara N.Tanpakushitsu Kakusan Koso. 1996 Apr;41(4):366-70.Tanpakushitsu Kakusan Koso. 1996.PMID:8721380Review.Japanese.No abstract available.
Cited by
- Strand-biased gene distribution in bacteria is related to both horizontal gene transfer and strand-biased nucleotide composition.Wu H, Qu H, Wan N, Zhang Z, Hu S, Yu J.Wu H, et al.Genomics Proteomics Bioinformatics. 2012 Aug;10(4):186-96. doi: 10.1016/j.gpb.2012.08.001. Epub 2012 Aug 8.Genomics Proteomics Bioinformatics. 2012.PMID:23084774Free PMC article.
- Evolution of competence and DNA uptake specificity in the Pasteurellaceae.Redfield RJ, Findlay WA, Bossé J, Kroll JS, Cameron AD, Nash JH.Redfield RJ, et al.BMC Evol Biol. 2006 Oct 12;6:82. doi: 10.1186/1471-2148-6-82.BMC Evol Biol. 2006.PMID:17038178Free PMC article.
- Variations in gene organization and DNA uptake signal sequence in the folP region between commensal and pathogenic Neisseria species.Qvarnstrom Y, Swedberg G.Qvarnstrom Y, et al.BMC Microbiol. 2006 Feb 17;6:11. doi: 10.1186/1471-2180-6-11.BMC Microbiol. 2006.PMID:16503987Free PMC article.
- Pasteurella Multocida Infection in Humans.Piorunek M, Brajer-Luftmann B, Walkowiak J.Piorunek M, et al.Pathogens. 2023 Oct 1;12(10):1210. doi: 10.3390/pathogens12101210.Pathogens. 2023.PMID:37887726Free PMC article.Review.
- Identification of neisserial DNA binding components.Lång E, Haugen K, Fleckenstein B, Homberset H, Frye SA, Ambur OH, Tønjum T.Lång E, et al.Microbiology (Reading). 2009 Mar;155(Pt 3):852-862. doi: 10.1099/mic.0.022640-0.Microbiology (Reading). 2009.PMID:19246756Free PMC article.
References
- Rocha E.P., Danchin,A. and Viari,A. (1999) Analysis of long repeats in bacterial genomes reveals alternative evolutionary mechanisms in Bacillus subtilis and other competent prokaryotes. Mol. Biol. Evol., 16, 1219–1230. - PubMed
- Danner D.B., Deich,R.A., Sisco,K.L. and Smith,H.O. (1980) An eleven-base-pair sequence determines the specificity of DNA uptake in Haemophilus transformation. Gene, 11, 311–318. - PubMed
- Parkhill J., Achtman,M., James,K.D., Bentley,S.D., Churcher,C., Klee,S.R., Morelli,G., Basham,D., Brown,D., Chillingworth,T. et al. (2000) Complete DNA sequence of a serogroup A strain of Neisseria meningitidis Z2491. Nature, 404, 502–506. - PubMed