Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Elsevier Science full text link Elsevier Science
Full text links

Actions

.2004 Mar 26;279(13):12190-205.
doi: 10.1074/jbc.M307039200. Epub 2003 Dec 31.

ZNF143 mediates basal and tissue-specific expression of human transaldolase

Affiliations
Free article

ZNF143 mediates basal and tissue-specific expression of human transaldolase

Craig E Grossman et al. J Biol Chem..
Free article

Abstract

Transaldolase regulates redox-dependent apoptosis through controlling NADPH and ribose 5-phosphate production via the pentose phosphate pathway. The minimal promoter sufficient to drive chloramphenicol acetyltransferase reporter gene activity was mapped to nucleotides -49 to -1 relative to the transcription start site of the human transaldolase gene. DNase I footprinting with nuclear extracts of transaldolase-expressing cell lines unveiled protection of nucleotides -29 to -16. Electrophoretic mobility shift assays identified a single dominant DNA-protein complex that was abolished by consensus sequence for transcription factor ZNF143/76 or mutation of the ZNF76/143 motif within the transaldolase promoter. Mutation of an AP-2alpha recognition sequence, partially overlapping the ZNF143 motif, increased TAL-H promoter activity in HeLa cells, without significant impact on HepG2 cells, which do not express AP-2alpha. Cooperativity of ZNF143 with AP-2alpha was supported by supershift analysis of HeLa cells where AP-2 may act as cell type-specific repressor of TAL promoter activity. However, overexpression of full-length ZNF143, ZNF76, or dominant-negative DNA-binding domain of ZNF143 enhanced, maintained, or abolished transaldolase promoter activity, respectively, in HepG2 and HeLa cells, suggesting that ZNF143 initiates transcription from the transaldolase core promoter. ZNF143 overexpression also increased transaldolase enzyme activity. ZNF143 and transaldolase expression correlated in 21 different human tissues and were coordinately upregulated 14- and 34-fold, respectively, in lactating mammary glands compared with nonlactating ones. Chromatin immunoprecipitation studies confirm that ZNF143/73 associates with the transaldolase promoter in vivo. Thus, ZNF143 plays a key role in basal and tissue-specific expression of transaldolase and regulation of the metabolic network controlling cell survival and differentiation.

PubMed Disclaimer

Publication types

MeSH terms

Substances

Grants and funding

LinkOut - more resources

Full text links
Elsevier Science full text link Elsevier Science
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2026 Movatter.jp