Generating the walking gait: role of sensory feedback
- PMID:14653157
- DOI: 10.1016/S0079-6123(03)43012-4
Generating the walking gait: role of sensory feedback
Abstract
In the walking system of the cat, feedback from muscle proprioceptors establishes the timing of major phase transitions in the motor pattern, contributes to the production of burst activity, generates some features of the motor pattern, and is required for the adaptive modification of the motor pattern in response to alterations in leg mechanics. How proprioceptive signals are integrated into central neuronal networks has not been fully established, largely due to the absence of detailed information on the functional characteristics of central networks in the presence of phasic afferent signals. Nevertheless, it appears likely that afferent signals reorganize the functioning of central networks, and the concept that the generation of the motor pattern can be explained by afferent modulation of a hard-wired central pattern generator may be too simplistic.
Similar articles
- [Motor control of gait].Boisacq-Schepens N.Boisacq-Schepens N.Neurochirurgie. 1998 Sep;44(3):158-66.Neurochirurgie. 1998.PMID:9827431Review.French.
- Sensory control and organization of neural networks mediating coordination of multisegmental organs for locomotion.Büschges A.Büschges A.J Neurophysiol. 2005 Mar;93(3):1127-35. doi: 10.1152/jn.00615.2004.J Neurophysiol. 2005.PMID:15738270Review.
- Learning in sensorimotor circuits.Schouenborg J.Schouenborg J.Curr Opin Neurobiol. 2004 Dec;14(6):693-7. doi: 10.1016/j.conb.2004.10.009.Curr Opin Neurobiol. 2004.PMID:15582370Review.
- A reflexive neural network for dynamic biped walking control.Geng T, Porr B, Wörgötter F.Geng T, et al.Neural Comput. 2006 May;18(5):1156-96. doi: 10.1162/089976606776241057.Neural Comput. 2006.PMID:16595061
- Thoracic leg motoneurons in the isolated CNS of adult Manduca produce patterned activity in response to pilocarpine, which is distinct from that produced in larvae.Johnston RM, Levine RB.Johnston RM, et al.Invert Neurosci. 2002 Oct;4(4):175-92. doi: 10.1007/s10158-002-0019-4. Epub 2002 Aug 3.Invert Neurosci. 2002.PMID:12488968
Cited by
- Dynamic primitives in the control of locomotion.Hogan N, Sternad D.Hogan N, et al.Front Comput Neurosci. 2013 Jun 21;7:71. doi: 10.3389/fncom.2013.00071. eCollection 2013.Front Comput Neurosci. 2013.PMID:23801959Free PMC article.
- Modeling the mammalian locomotor CPG: insights from mistakes and perturbations.McCrea DA, Rybak IA.McCrea DA, et al.Prog Brain Res. 2007;165:235-53. doi: 10.1016/S0079-6123(06)65015-2.Prog Brain Res. 2007.PMID:17925250Free PMC article.Review.
- Effects of periodic sensory perturbations during electrical stimulation on gait cycle period.Nishimura K, Martinez E, Loeza A, Parker J, Kim SJ.Nishimura K, et al.PLoS One. 2018 Dec 31;13(12):e0209781. doi: 10.1371/journal.pone.0209781. eCollection 2018.PLoS One. 2018.PMID:30596726Free PMC article.Clinical Trial.
- Central and sensory contributions to the activation and organization of muscle synergies during natural motor behaviors.Cheung VC, d'Avella A, Tresch MC, Bizzi E.Cheung VC, et al.J Neurosci. 2005 Jul 6;25(27):6419-34. doi: 10.1523/JNEUROSCI.4904-04.2005.J Neurosci. 2005.PMID:16000633Free PMC article.
- Robot-Driven Locomotor Perturbations Reveal Synergy-Mediated, Context-Dependent Feedforward and Feedback Mechanisms of Adaptation.Severini G, Koenig A, Adans-Dester C, Cajigas I, Cheung VCK, Bonato P.Severini G, et al.Sci Rep. 2020 Mar 25;10(1):5104. doi: 10.1038/s41598-020-61231-8.Sci Rep. 2020.PMID:32214125Free PMC article.
Publication types
MeSH terms
Related information
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous