Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Elsevier Science full text link Elsevier Science
Full text links

Actions

Share

.2003 Nov;22(4-5):495-513.
doi: 10.1016/j.humov.2003.09.006.

Fine motor deficiencies in children with developmental coordination disorder and learning disabilities: an underlying open-loop control deficit

Affiliations

Fine motor deficiencies in children with developmental coordination disorder and learning disabilities: an underlying open-loop control deficit

B C M Smits-Engelsman et al. Hum Mov Sci.2003 Nov.

Abstract

Thirty-two children with Developmental Coordination Disorder (DCD) and learning disabilities (LD) and their age-matched controls attending normal primary schools were investigated using kinematic movement analysis of fine-motor performance. Three hypotheses about the nature of the motor deficits observed in children with LD were tested: general slowness hypothesis, limited information capacity hypothesis, and the motor control mode hypothesis. Measures of drawing movements were analyzed under different task conditions using a Fitts' paradigm. In a reciprocal aiming task, the children drew straight-line segments between two targets 2.5 cm apart. Three Target Sizes were used (0.22, 0.44, and 0.88 cm). Children used an electronic pen that left no trace on the writing tablet. To manipulate the degree of open-loop movement control, the aiming task was performed under two different control regimes: discrete aiming and cyclic aiming. The kinematic analysis of the writing movements of the 32 children with DCD/LD that took part in the experimental study confirmed that besides learning disabilities they have a motor learning problem as well. Overall, the two groups did not differ in response time, nor did they respond differently according to Fitts' Law. Both groups displayed a conventional trade-off between Target Size and average Movement Time. However, while movement errors for children with DCD/LD were minimal on the discrete task, they made significantly more errors on the cyclic task. This, together with faster endpoint velocities, suggests a reduced ability to use a control strategy that emphasizes the terminal control of accuracy. Taken together, the results suggest that children with DCD/LD rely more on feedback during movement execution and have difficulty switching to a feedforward or open-loop strategy.

PubMed Disclaimer

Similar articles

See all similar articles

Cited by

See all "Cited by" articles

MeSH terms

Related information

LinkOut - more resources

Full text links
Elsevier Science full text link Elsevier Science
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp