Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Wiley full text link Wiley
Full text links

Actions

Share

Comparative Study
.2003 Oct 15;299(1):41-53.
doi: 10.1002/jez.b.40.

Phylogenetic analyses alone are insufficient to determine whether genome duplication(s) occurred during early vertebrate evolution

Affiliations
Comparative Study

Phylogenetic analyses alone are insufficient to determine whether genome duplication(s) occurred during early vertebrate evolution

Amy C Horton et al. J Exp Zool B Mol Dev Evol..

Abstract

The widely accepted notion that two whole-genome duplications occurred during early vertebrate evolution (the 2R hypothesis) stems from the fact that vertebrates often possess several genes corresponding to a single invertebrate homolog. However the number of genes predicted by the Human Genome Project is less than twice as many as in the Drosophila melanogaster or Caenorhabditis elegans genomes. This ratio could be explained by two rounds of genome duplication followed by extensive gene loss, by a single genome duplication, by sequential local duplications, or by a combination of any of the above. The traditional method used to distinguish between these possibilities is to reconstruct the phylogenetic relationships of vertebrate genes to their invertebrate orthologs; ratios of invertebrate-to-vertebrate counterparts are then used to infer the number of gene duplication events. The lancelet, amphioxus, is the closest living invertebrate relative of the vertebrates, and unlike protostomes such as flies or nematodes, is therefore the most appropriate outgroup for understanding the genomic composition of the last common ancestor of all vertebrates. We analyzed the relationships of all available amphioxus genes to their vertebrate homologs. In most cases, one to three vertebrate genes are orthologous to each amphioxus gene (median number=2). Clearly this result, and those of previous studies using this approach, cannot distinguish between alternative scenarios of chordate genome expansion. We conclude that phylogenetic analyses alone will never be sufficient to determine whether genome duplication(s) occurred during early chordate evolution, and argue that a "phylogenomic" approach, which compares paralogous clusters of linked genes from complete amphioxus and human genome sequences, will be required if the pattern and process of early chordate genome evolution is ever to be reconstructed.

Copyright 2003 Wiley-Liss, Inc.

PubMed Disclaimer

Similar articles

See all similar articles

Cited by

See all "Cited by" articles

Publication types

MeSH terms

Related information

LinkOut - more resources

Full text links
Wiley full text link Wiley
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp