Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Actions

Share

.1992 Jan;30(1):77-85.
doi: 10.1016/0041-0101(92)90503-w.

Biological properties of a crude venom extract from the greater weever fish Trachinus draco

Affiliations

Biological properties of a crude venom extract from the greater weever fish Trachinus draco

I Chhatwal et al. Toxicon.1992 Jan.

Abstract

Crude venom of the greater weever fish, Trachinus draco was analyzed to assess its toxicity, stability and biological properties. The best yield of venom was obtained by extraction in physiological saline of the whole venom apparatus of the fish which were shock-frozen and stored at -70 degrees C. This extract had a mouse i.v. minimum lethal dose of 1.8 micrograms protein per gram mouse and a total of 61,000 minimum lethal doses were obtained from venom apparatus of one fish. The lethal activity was unstable at room temperature especially at lower protein concentrations. Stability was achieved either by storing the extract at -70 degrees C or by precipitation with ammonium sulfate at 50% saturation. Toxicity of the crude venom was abolished by trypsin treatment. The crude venom did not possess any proteolytic or histamine-releasing activities. The venom caused an outflow of tetraphenylphosphonium from preloaded rat brain particles in a concentration-dependent manner. Like toxicity, this effect was also abolished by trypsin treatment or by keeping the venom at higher temperatures. The crude venom also possessed hemolytic activity with an EC50 for rabbit erythrocytes of 75 ng/ml venom protein. The hemolytic activity was also sensitive to heat and proteolytic treatment. Rabbit erythrocytes were most sensitive to venom followed by rat erythrocytes. Mouse and cattle erythrocytes were only slightly sensitive, whereas human, chicken and guinea pig erythrocytes were totally resistant.

PubMed Disclaimer

Similar articles

See all similar articles

Cited by

See all "Cited by" articles

MeSH terms

Substances

Related information

Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp