Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Elsevier Science full text link Elsevier Science
Full text links

Actions

.2003 Oct;307(1):138-45.
doi: 10.1124/jpet.103.053975. Epub 2003 Sep 3.

In vitro characterization of ephedrine-related stereoisomers at biogenic amine transporters and the receptorome reveals selective actions as norepinephrine transporter substrates

Affiliations

In vitro characterization of ephedrine-related stereoisomers at biogenic amine transporters and the receptorome reveals selective actions as norepinephrine transporter substrates

Richard B Rothman et al. J Pharmacol Exp Ther.2003 Oct.

Abstract

Ephedrine is a long-studied stimulant available both as a prescription and over-the-counter medication, as well as an ingredient in widely marketed herbal preparations, and is also used as a precursor for the illicit synthesis of methamphetamine. Ephedrine is related to phenylpropanolamine, a decongestant removed from the market place due to concerns that its use increased the risk of hemorrhagic stroke. Standard pharmacology texts emphasize that ephedrine is both a direct and indirect adrenergic agonist, activating adrenergic receptors both by direct agonist activity as well as by releasing norepinephrine via a carrier-mediated exchange mechanism. Chemically, ephedrine possesses two chiral centers. In the present study, we characterized the stereoisomers of ephedrine and the closely related compounds pseudoephedrine, norephedrine, pseudonorephedrine (cathine), methcathinone, and cathinone at biogenic amine transporters and a large battery of cloned human receptors (e.g., "receptorome"). The most potent actions of ephedrine-type compounds were as substrates of the norepinephrine transporter (EC50 values of about 50 nM) followed by substrate activity at the dopamine transporter. Screening the receptorome demonstrated weak affinity at alpha2-adrenergic and 5-hydroxytryptamine7 receptors (Ki values 1-10 microM) and no significant activity at beta-adrenergic or alpha1-adrenergic receptors. Viewed collectively, these data indicate that the pharmacological effects of ephedrine-like phenylpropanolamines are likely mediated by norepinephrine release, and although sharing mechanistic similarities with, they differ in important respects from those of the phenylpropanonamines methcathinone and cathinone and the phenyisopropylamines methamphetamine and amphetamine.

PubMed Disclaimer

Publication types

MeSH terms

Substances

Grants and funding

LinkOut - more resources

Full text links
Elsevier Science full text link Elsevier Science
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2026 Movatter.jp