Physical and functional interaction between DNA ligase IIIalpha and poly(ADP-Ribose) polymerase 1 in DNA single-strand break repair
- PMID:12897160
- PMCID: PMC166336
- DOI: 10.1128/MCB.23.16.5919-5927.2003
Physical and functional interaction between DNA ligase IIIalpha and poly(ADP-Ribose) polymerase 1 in DNA single-strand break repair
Abstract
The repair of DNA single-strand breaks in mammalian cells is mediated by poly(ADP-ribose) polymerase 1 (PARP-1), DNA ligase IIIalpha, and XRCC1. Since these proteins are not found in lower eukaryotes, this DNA repair pathway plays a unique role in maintaining genome stability in more complex organisms. XRCC1 not only forms a stable complex with DNA ligase IIIalpha but also interacts with several other DNA repair factors. Here we have used affinity chromatography to identify proteins that associate with DNA ligase III. PARP-1 binds directly to an N-terminal region of DNA ligase III immediately adjacent to its zinc finger. In further studies, we have shown that DNA ligase III also binds directly to poly(ADP-ribose) and preferentially associates with poly(ADP-ribosyl)ated PARP-1 in vitro and in vivo. Our biochemical studies have revealed that the zinc finger of DNA ligase III increases DNA joining in the presence of either poly(ADP-ribosyl)ated PARP-1 or poly(ADP-ribose). This provides a mechanism for the recruitment of the DNA ligase IIIalpha-XRCC1 complex to in vivo DNA single-strand breaks and suggests that the zinc finger of DNA ligase III enables this complex and associated repair factors to locate the strand break in the presence of the negatively charged poly(ADP-ribose) polymer.
Figures








Similar articles
- XRCC1 is specifically associated with poly(ADP-ribose) polymerase and negatively regulates its activity following DNA damage.Masson M, Niedergang C, Schreiber V, Muller S, Menissier-de Murcia J, de Murcia G.Masson M, et al.Mol Cell Biol. 1998 Jun;18(6):3563-71. doi: 10.1128/MCB.18.6.3563.Mol Cell Biol. 1998.PMID:9584196Free PMC article.
- Poly(ADP-ribose) polymerase-2 (PARP-2) is required for efficient base excision DNA repair in association with PARP-1 and XRCC1.Schreiber V, Amé JC, Dollé P, Schultz I, Rinaldi B, Fraulob V, Ménissier-de Murcia J, de Murcia G.Schreiber V, et al.J Biol Chem. 2002 Jun 21;277(25):23028-36. doi: 10.1074/jbc.M202390200. Epub 2002 Apr 10.J Biol Chem. 2002.PMID:11948190
- Involvement of poly(ADP-ribose) polymerase-1 and XRCC1/DNA ligase III in an alternative route for DNA double-strand breaks rejoining.Audebert M, Salles B, Calsou P.Audebert M, et al.J Biol Chem. 2004 Dec 31;279(53):55117-26. doi: 10.1074/jbc.M404524200. Epub 2004 Oct 21.J Biol Chem. 2004.PMID:15498778
- Structure and function of the DNA ligases encoded by the mammalian LIG3 gene.Tomkinson AE, Sallmyr A.Tomkinson AE, et al.Gene. 2013 Dec 1;531(2):150-7. doi: 10.1016/j.gene.2013.08.061. Epub 2013 Sep 5.Gene. 2013.PMID:24013086Free PMC article.Review.
- Completion of base excision repair by mammalian DNA ligases.Tomkinson AE, Chen L, Dong Z, Leppard JB, Levin DS, Mackey ZB, Motycka TA.Tomkinson AE, et al.Prog Nucleic Acid Res Mol Biol. 2001;68:151-64. doi: 10.1016/s0079-6603(01)68097-8.Prog Nucleic Acid Res Mol Biol. 2001.PMID:11554294Review.
Cited by
- Functional roles of ADP-ribosylation writers, readers and erasers.Li P, Lei Y, Qi J, Liu W, Yao K.Li P, et al.Front Cell Dev Biol. 2022 Aug 11;10:941356. doi: 10.3389/fcell.2022.941356. eCollection 2022.Front Cell Dev Biol. 2022.PMID:36035988Free PMC article.Review.
- Cooperation of the Cockayne syndrome group B protein and poly(ADP-ribose) polymerase 1 in the response to oxidative stress.Thorslund T, von Kobbe C, Harrigan JA, Indig FE, Christiansen M, Stevnsner T, Bohr VA.Thorslund T, et al.Mol Cell Biol. 2005 Sep;25(17):7625-36. doi: 10.1128/MCB.25.17.7625-7636.2005.Mol Cell Biol. 2005.PMID:16107709Free PMC article.
- Perinatal asphyxia: current status and approaches towards neuroprotective strategies, with focus on sentinel proteins.Herrera-Marschitz M, Morales P, Leyton L, Bustamante D, Klawitter V, Espina-Marchant P, Allende C, Lisboa F, Cunich G, Jara-Cavieres A, Neira T, Gutierrez-Hernandez MA, Gonzalez-Lira V, Simola N, Schmitt A, Morelli M, Andrew Tasker R, Gebicke-Haerter PJ.Herrera-Marschitz M, et al.Neurotox Res. 2011 May;19(4):603-27. doi: 10.1007/s12640-010-9208-9. Epub 2010 Jul 20.Neurotox Res. 2011.PMID:20645042Free PMC article.Review.
- Targeting the MALAT1/PARP1/LIG3 complex induces DNA damage and apoptosis in multiple myeloma.Hu Y, Lin J, Fang H, Fang J, Li C, Chen W, Liu S, Ondrejka S, Gong Z, Reu F, Maciejewski J, Yi Q, Zhao JJ.Hu Y, et al.Leukemia. 2018 Oct;32(10):2250-2262. doi: 10.1038/s41375-018-0104-2. Epub 2018 Mar 22.Leukemia. 2018.PMID:29632340Free PMC article.
- DNA ligase III: a spotty presence in eukaryotes, but an essential function where tested.Simsek D, Jasin M.Simsek D, et al.Cell Cycle. 2011 Nov 1;10(21):3636-44. doi: 10.4161/cc.10.21.18094. Epub 2011 Nov 1.Cell Cycle. 2011.PMID:22041657Free PMC article.Review.
References
- Ausubel, F. M., R. Brent, R. Kingston, D. Morre, J. Seidman, A. Smith, and K. Struhl. 1994. Current protocols in molecular biology. John Wiley and Sons, Inc., New York, N.Y.
- Callebaut, I., and J. P. Mornon. 1997. From BRCA1 to RAP1: a widespread BRCT module closely associated with DNA repair. FEBS Lett. 400:25-30. - PubMed
Publication types
MeSH terms
Substances
Related information
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous