Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Wiley full text link Wiley
Full text links

Actions

Share

.2003 Aug;25(8):808-14.
doi: 10.1002/bies.10317.

Are poly(ADP-ribosyl)ation by PARP-1 and deacetylation by Sir2 linked?

Affiliations

Are poly(ADP-ribosyl)ation by PARP-1 and deacetylation by Sir2 linked?

Jie Zhang. Bioessays.2003 Aug.

Abstract

Poly(ADP-ribose) polymerase-1 (PARP-1) safeguards genomic integrity by limiting sister chromatid exchanges. Overstimulation of PARP-1 by extensive DNA damage, however, can result in cell death, as prolonged PARP-1 activation depletes NAD(+), a substrate, and elevates nicotinamide, a product. The decline of NAD(+) and the rise of nicotinamide may downregulate the activity of Sir2, the NAD(+)-dependent deacetylases, because deacetylation by Sir2 is dependent on high concentration of NAD(+) and inhibited by physiologic level of nicotinamide. The Sir2 deacetylase family has been implicated in mediating gene silencing, longevity and genome stability. It is conceivable that poly(ADP-ribosyl)ation by PARP-1, which is induced by DNA damage, could modulate protein deacetylation by Sir2 via the NAD(+)/nicotinamide connection. The possible linkage of the two ancient pathways that mediate broad biological activities may spell profound evolutionary roles for the conserved PARP-1 and Sir2 gene families in multicellular eukaryotes.

Copyright 2003 Wiley Periodicals, Inc.

PubMed Disclaimer

Similar articles

See all similar articles

Cited by

See all "Cited by" articles

MeSH terms

Substances

Related information

LinkOut - more resources

Full text links
Wiley full text link Wiley
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp