Potent inhibitors of Plasmodium phospholipid metabolism with a broad spectrum of in vitro antimalarial activities
- PMID:12878524
- PMCID: PMC166094
- DOI: 10.1128/AAC.47.8.2590-2597.2003
Potent inhibitors of Plasmodium phospholipid metabolism with a broad spectrum of in vitro antimalarial activities
Abstract
We characterized the potent in vitro antimalarial activity and biologic assessment of 13 phospholipid polar head analogs on a comparative basis. There was a positive relationship between the abilities of the drugs to inhibit parasite growth in culture and their abilities to specifically inhibit phosphatidylcholine biosynthesis of Plasmodium falciparum-infected erythrocytes. Maximal activity of G25 was observed for the trophozoite stage of the 48-h erythrocytic cycle (50% inhibitory concentration, 0.75 nM), whereas the schizont and ring stages were 12- and 213-fold less susceptible. The compounds exerted a rapid nonreversible cytotoxic effect, with complete clearance of parasitemia after 5 h of contact with the mature stages. The compounds were highly specific against P. falciparum, with much lower toxicity against three other mammalian cell lines, and the in vitro therapeutic indices ranged from 300 to 2,500,000. Finally, the monoquaternary ammonium E10 and two bis-ammonium salts, G5 and G25, were similarly active against multiresistant strains and fresh isolates of P. falciparum. This impressive selective in vitro toxicity against P. falciparum strongly highlights the clinical potential of these quaternary ammonium salts for malarial chemotherapy.
Figures





References
- Adovelande, J., J. Deleze, and J. Schrevel. 1998. Synergy between two calcium channel blockers, verapamil and fantofarone (SR33557), in reversing chloroquine resistance in Plasmodium falciparum. Biochem. Pharmacol. 55:433-440. - PubMed
- Ancelin, M. L., M. Calas, J. Bompart, G. Cordina, D. Martin, M. Ben Bari, T. Jei, P. Druilhe, and H. J. Vial. 1998. Antimalarial activity of 77 phospholipid polar head analogs: close correlation between inhibition of phospholipid metabolism and in vitro Plasmodium falciparum growth. Blood 91:1426-1437. - PubMed
- Ancelin, M. L., and H. J. Vial. 1989. Regulation of phosphatidylcholine biosynthesis in Plasmodium-infected erythrocytes. Biochim. Biophys. Acta 1001:82-89. - PubMed
- Ancelin, M. L., F. Vialettes, and H. J. Vial. 1991. An original method for rapid serial determination of phospholipid biosynthesis. Applications to mammalian lymphocytic cells and a lower eucaryote, Plasmodium falciparum. Anal. Biochem. 199:203-209. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous
