Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Wiley full text link Wiley
Full text links

Actions

Share

Review
.2003 May:993:217-28; discussion 287-8.
doi: 10.1111/j.1749-6632.2003.tb07532.x.

Poly(ADP-Ribose) polymerase-1 in acute neuronal death and inflammation: a strategy for neuroprotection

Affiliations
Review

Poly(ADP-Ribose) polymerase-1 in acute neuronal death and inflammation: a strategy for neuroprotection

Stephen D Skaper. Ann N Y Acad Sci.2003 May.

Abstract

Poly(ADP-ribose) polymerase-1 (PARP-1) is an abundant nuclear enzyme that is activated primarily by DNA damage. Upon activation, the enzyme hydrolyzes NAD(+) to nicotinamide and transfers ADP ribose units to a variety of nuclear proteins, including histones and PARP-1 itself. This process is important in facilitating DNA repair. However, excessive activation of PARP-1 can lead to significant decrements in NAD(+), and ATP depletion, and cell death (suicide hypothesis). In response to cellular damage by oxygen radicals or excitotoxicity, a rapid and strong activation of PARP-1 occurs in neurons. Excessive PARP-1 activation is implicated in a variety of insults, including cerebral and cardiac ischemia, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinsonism, traumatic spinal cord injury, and streptozotocin-induced diabetes. The use of PARP inhibitors has, therefore, been proposed as a protective therapy in decreasing excitotoxic neuronal cell death, as well as ischemic and other tissue damage. Excitotoxic brain lesions initially result in the primary destruction of brain parenchyma and subsequently in secondary damage of neighboring neurons hours after the insult. This secondary damage of initially surviving neurons accounts for most of the volume of the infarcted area and the loss of brain function after a stroke. One major component of secondary neuronal damage is the migration of macrophages and microglial cells toward the sites of injury, where they produce large quantities of toxic cytokines and oxygen radicals. Recent evidence indicates that this microglial migration is strongly controlled in living brain tissue by expression of the integrin CD11a, which is regulated in turn by PARP-1, proposing that PARP-1 downregulation may, therefore, be a promising strategy in protecting neurons from this secondary damage, as well. Studies demonstrating an important role for PARP-1 in the regulation of gene transcription have further increased the intricacy of poly(ADP-ribosyl)ation in the control of cell homeostasis and challenge the notion that energy collapse is the sole mechanism by which poly(ADP-ribose) formation contributes to cell death. The hypothesis that PARPs might regulate cell fate as essential modulators of death and survival transcriptional programs is discussed with relation to nuclear factor kappaB and p53.

PubMed Disclaimer

Similar articles

See all similar articles

Cited by

See all "Cited by" articles

Publication types

MeSH terms

Substances

Related information

LinkOut - more resources

Full text links
Wiley full text link Wiley
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp