Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Actions

Share

Review
.2003 Mar;16(2):103-8.
doi: 10.1358/dnp.2003.16.2.829327.

From neurodegeneration to neurohomeostasis: the role of ubiquitin

Affiliations
Review

From neurodegeneration to neurohomeostasis: the role of ubiquitin

R John Mayer. Drug News Perspect.2003 Mar.

Abstract

Several years ago ubiquitin immunocytochemistry first demonstrated that ubiquitin protein conjugates are present in intraneuronal inclusions in all the major human chronic neurodegenerative diseases, as well as in inclusions in cerebellar astrocytomas and in hepatocytes in alcoholic liver disease. Unexpectedly, further studies showed that Lewy bodies are present in the cortex. Lewy bodies were originally described in the brain stem and are pathogonomic in the neuropathological diagnosis of Parkinson's disease. A balanced interpretation of further elegant experimental approaches, including transgenesis, suggests that the formation of intraneuronal inclusions is cytoprotective. Putative oligomeric proaggregates (prefibrillar entities) of cellular proteins inhibit the 26S proteasome and promote apoptosis. In the last few years a clutch of distinct experimental approaches have focused on the roles of ubiquitin-related processes in the development of the nervous system and neurohomeostasis. It is now clear that the ubiquitin/proteasome system (UPP) has a pivotal role in synaptogenesis, the formation of neuromuscular junctions and neurotransmitter receptor function. The inhibitory GABA(A) receptor, alpha1 glycine receptor, beta(2)-adrenergic receptor and arrestin, opiate receptors and the excitatory metabotropic glutamate receptor (mGluR1alpha) are regulated by the UPP. It is also increasingly clear that the regulation of long-term synaptic plasticity, and therefore memory, is dependent on both protein synthesis and protein degradation. Therefore, for the first time we have the opportunity to dissect the substrate of memory and the basis of cognitive decline in aging and in chronic neurodegenerative disease. Clearly, further understanding will provide a platform for novel drug development to treat chronic neurodegenerative diseases, including Alzheimer- and Parkinson-related conditions, and possibly psychiatric disorders.

(c) 2003 Prous Science. All rights reserved.

PubMed Disclaimer

Similar articles

See all similar articles

Cited by

See all "Cited by" articles

Publication types

MeSH terms

Substances

Related information

LinkOut - more resources

Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp