Concordia discors: duality in the origin of the vertebrate tail
- PMID:12713266
- PMCID: PMC1571085
- DOI: 10.1046/j.1469-7580.2003.00163.x
Concordia discors: duality in the origin of the vertebrate tail
Abstract
The vertebrate tail is an extension of the main body axis caudal to the anus. The developmental origin of this structure has been a source of debate amongst embryologists for the past century. Some view tail development as a continuation of the morphogenetic processes that shape the head and trunk (i.e. gastrulation). The alternative view, secondary development, holds that the tail forms in a manner similar to limb development, i.e. by secondary induction. Previous developmental studies have provided support for both views. Here I revisit these studies, describing caudal morphogenesis in select vertebrates, the associated genes and developmental defects, and, as a relevant aside, consider the developmental and evolutionary relationships of primary and secondary neurulation. I conclude that caudal development enlists both gastrulation and secondary induction, and that the application of recent high-resolution cell labelling technology may clarify how these discordant programmes interact in building the vertebrate tail.
Figures


Similar articles
- No tail co-operates with non-canonical Wnt signaling to regulate posterior body morphogenesis in zebrafish.Marlow F, Gonzalez EM, Yin C, Rojo C, Solnica-Krezel L.Marlow F, et al.Development. 2004 Jan;131(1):203-16. doi: 10.1242/dev.00915. Epub 2003 Dec 3.Development. 2004.PMID:14660439Free PMC article.
- The evolution of vertebrate gastrulation.De Robertis EM, Fainsod A, Gont LK, Steinbeisser H.De Robertis EM, et al.Dev Suppl. 1994:117-24.Dev Suppl. 1994.PMID:7579512
- Conserved patterns of cell movements during vertebrate gastrulation.Solnica-Krezel L.Solnica-Krezel L.Curr Biol. 2005 Mar 29;15(6):R213-28. doi: 10.1016/j.cub.2005.03.016.Curr Biol. 2005.PMID:15797016Review.
- Continuing organizer function during chick tail development.Knezevic V, De Santo R, Mackem S.Knezevic V, et al.Development. 1998 May;125(10):1791-801. doi: 10.1242/dev.125.10.1791.Development. 1998.PMID:9550712
- Inducing factors and the mechanism of body pattern formation in vertebrate embryos.Cooke J.Cooke J.Curr Top Dev Biol. 1991;25:45-75. doi: 10.1016/s0070-2153(08)60411-1.Curr Top Dev Biol. 1991.PMID:1743057Review.No abstract available.
Cited by
- Proceedings of the 2013 National Toxicology Program Satellite Symposium.Elmore SA, Boyle MC, Boyle MH, Cora MC, Crabbs TA, Cummings CA, Gruebbel MM, Johnson CL, Malarkey DE, McInnes EF, Nolte T, Shackelford CC, Ward JM.Elmore SA, et al.Toxicol Pathol. 2014 Jan;42(1):12-44. doi: 10.1177/0192623313508020. Epub 2013 Dec 13.Toxicol Pathol. 2014.PMID:24334674Free PMC article.
- The neural crest and neural crest cells: discovery and significance for theories of embryonic organization.Hall BK.Hall BK.J Biosci. 2008 Dec;33(5):781-93. doi: 10.1007/s12038-008-0098-4.J Biosci. 2008.PMID:19179766Review.
- The Enigmatic Reissner's Fiber and the Origin of Chordates.Aboitiz F, Montiel JF.Aboitiz F, et al.Front Neuroanat. 2021 Jun 23;15:703835. doi: 10.3389/fnana.2021.703835. eCollection 2021.Front Neuroanat. 2021.PMID:34248511Free PMC article.Review.
- Stem Cell Neurodevelopmental Solutions for Restorative Treatments of the Human Trunk and Spine.Olmsted ZT, Paluh JL.Olmsted ZT, et al.Front Cell Neurosci. 2021 Apr 26;15:667590. doi: 10.3389/fncel.2021.667590. eCollection 2021.Front Cell Neurosci. 2021.PMID:33981202Free PMC article.
- Constructing the pharyngula: Connecting the primary axial tissues of the head with the posterior axial tissues of the tail.Masak G, Davidson LA.Masak G, et al.Cells Dev. 2023 Dec;176:203866. doi: 10.1016/j.cdev.2023.203866. Epub 2023 Jun 30.Cells Dev. 2023.PMID:37394035Free PMC article.Review.
References
- van den Akker E, Forlani S, Chawengsaksophak K, de Graaff W, Beck F, Meyer BI, et al. Cdx1 and Cdx2 have overlapping functions in anteroposterior patterning and posterior axis formation. Development. 2002;129:2181–2193. - PubMed
- Amaya E, Musci TJ, Kirschner MW. Expression of a dominant negative receptor mutant of the FGF receptor disrupts mesoderm formation in Xenopus embryos. Cell. 1991;66:257–270. - PubMed
- Balinsky BI. An Introduction to Embryology. 5th edn. Toronto: Saunders; 1981.
- Beck CW, Slack JMW. Analysis of the developing Xenopus tailbud reveals separate phases of gene expression during determination and outgrowth. Mech. Dev. 1998;72:41–52. - PubMed
Publication types
MeSH terms
Related information
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Miscellaneous