Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Elsevier Science full text link Elsevier Science
Full text links

Actions

Share

.2003 Mar;304(3):1188-96.
doi: 10.1124/jpet.102.044685.

Selective depression by general anesthetics of glutamate versus GABA release from isolated cortical nerve terminals

Affiliations

Selective depression by general anesthetics of glutamate versus GABA release from isolated cortical nerve terminals

Robert I Westphalen et al. J Pharmacol Exp Ther.2003 Mar.

Abstract

The role of presynaptic mechanisms in general anesthetic depression of excitatory glutamatergic neurotransmission and facilitation of GABA-mediated inhibitory neurotransmission is unclear. A dual isotope method allowed simultaneous comparisons of the effects of a representative volatile (isoflurane) and intravenous (propofol) anesthetic on the release of glutamate and GABA from isolated rat cerebrocortical nerve terminals (synaptosomes). Synaptosomes were prelabeled with L-[(3)H]glutamate and [(14)C]GABA, and release was determined by superfusion with pulses of 30 mM K(+) or 1 mM 4-aminopyridine (4AP) in the absence or presence of 1.9 mM free Ca(2+). Isoflurane maximally inhibited Ca(2+)-dependent 4AP-evoked L-[(3)H]glutamate release (99 +/- 8% inhibition) to a greater extent than [(14)C]GABA release (74 +/- 6% inhibition; P = 0.023). Greater inhibition of L-[(3)H]glutamate versus [(14)C]GABA release was also observed for the Na(+) channel antagonists tetrodotoxin (99 +/- 4 versus 63 +/- 5% inhibition; P < 0.001) and riluzole (84 +/- 5 versus 52 +/- 12% inhibition; P = 0.041). Propofol did not differ in its maximum inhibition of Ca(2+)-dependent 4AP-evoked L-[(3)H]glutamate release (76 +/- 12% inhibition) compared with [(14)C]GABA (84 +/- 31% inhibition; P = 0.99) release. Neither isoflurane (1 mM) nor propofol (15 microM) affected K(+)-evoked release, consistent with a molecular target upstream of the synaptic vesicle exocytotic machinery or voltage-gated Ca(2+) channels coupled to transmitter release. These findings support selective presynaptic depression of excitatory versus inhibitory neurotransmission by clinical concentrations of isoflurane, probably as a result of Na(+) channel blockade.

PubMed Disclaimer

Similar articles

See all similar articles

Cited by

See all "Cited by" articles

Publication types

MeSH terms

Substances

Related information

Grants and funding

LinkOut - more resources

Full text links
Elsevier Science full text link Elsevier Science
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp