Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Wiley full text link Wiley
Full text links

Actions

Share

Review
.2003 Mar;120(3):278-97.
doi: 10.1002/ajpa.1152.

Patterns of joint size dimorphism in the elbow and knee of catarrhine primates

Affiliations
Review

Patterns of joint size dimorphism in the elbow and knee of catarrhine primates

Michael R Lague. Am J Phys Anthropol.2003 Mar.

Abstract

Differences in body size between conspecific sexes may incur differences in the relative size and/or shape of load-bearing joints, potentially confounding our understanding of variation in the fossil record. More specifically, larger males may experience relatively greater limb joint stress levels than females, unless an increase in weight-related forces is compensated for by positive allometry of articular surface areas. This study examines variation in limb joint size dimorphism (JSD) among extant catarrhines to: 1) determine whether taxa exhibit JSD beyond that expected to simply maintain geometric similarity between sexes, and 2) test whether taxa differ in JSD (relative to body size dimorphism) with respect to differences in limb use and/or phylogeny. "Joint size" was quantified for the distal humerus and distal femur of 25 taxa. Analysis of variance was used to test for differences between sexes (in joint size ratios) and among taxa (in patterns of dimorphism). Multiple regression was used to examine differences in JSD among taxa after accounting for variation in body size dimorphism (BSD) and body size. Although degrees of humeral and femoral JSD tend to be the same within species, interspecific variation exists in the extent to which both joints are dimorphic relative to BSD. While most cercopithecoids exhibit relatively high degrees of JSD (i.e., positive allometry), nonhuman hominoids exhibit degrees of JSD closer to isometry. These results may reflect a fundamental distinction between cercopithecoids and hominoids in joint design. Overall, the results make more sense (from a mechanical standpoint) when adjustments to BSD are made to account for the larger effective female body mass associated with bearing offspring. In contrast to other hominoids, modern humans exhibit relatively high JSD in both the knee and elbow (despite lack of forelimb use in weight support). Estimates of BSD based on fossil limb bones will vary according to the extant analogue chosen for comparison.

Copyright 2003 Wiley-Liss, Inc.

PubMed Disclaimer

Similar articles

See all similar articles

Publication types

MeSH terms

LinkOut - more resources

Full text links
Wiley full text link Wiley
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp