Measuring distances in supported bilayers by fluorescence interference-contrast microscopy: polymer supports and SNARE proteins
- PMID:12524294
- PMCID: PMC1302622
- DOI: 10.1016/S0006-3495(03)74861-9
Measuring distances in supported bilayers by fluorescence interference-contrast microscopy: polymer supports and SNARE proteins
Abstract
Fluorescence interference-contrast (FLIC) microscopy is a powerful new technique to measure vertical distances from reflective surfaces. A pattern of varying intensity is created by constructive and destructive interference of the incoming and reflected light at the surface of an oxidized silicon chip. Different levels of this pattern are probed by manufacturing silicon chips with terraces of oxide layers of different heights. Fluorescence collected from membranes that are deposited on these terraces is then used to measure the distance of the fluorescent probes from the silicon oxide surface. Here, we applied the method to measure the distance between supported lipid bilayers and the surface of oxidized silicon chips. For plain fluid phosphatidylcholine bilayers, this distance was 1.7 +/- 1.0 nm. The cleft distance was increased to 3.9 +/- 0.9 nm in bilayers that were supported on a 3400-Da polyethylene glycol cushion. This distance is close to the Flory distance (4.8 nm) that would be expected for a grafted random coil of this polymer. In a second application, the distance of a membrane-bound protein from the membrane surface was measured. The integral membrane protein syntaxin1A/SNAP25 (t-SNARE) was reconstituted into tethered polymer-supported bilayers. A soluble form of the green fluorescent protein/vesicle-associated membrane protein (GFP-VAMP) was bound to the reconstituted t-SNAREs. The distance of the GFP from the membrane surface was 16.5 +/- 2.8 nm, indicating an upright orientation of the rod-shaped t-SNARE/v-SNARE complex from the membrane surface.
Figures







Similar articles
- Reconstituted syntaxin1a/SNAP25 interacts with negatively charged lipids as measured by lateral diffusion in planar supported bilayers.Wagner ML, Tamm LK.Wagner ML, et al.Biophys J. 2001 Jul;81(1):266-75. doi: 10.1016/S0006-3495(01)75697-4.Biophys J. 2001.PMID:11423412Free PMC article.
- Regulation of neuronal SNARE assembly by the membrane.Kweon DH, Kim CS, Shin YK.Kweon DH, et al.Nat Struct Biol. 2003 Jun;10(6):440-7. doi: 10.1038/nsb928.Nat Struct Biol. 2003.PMID:12740606
- Close is not enough: SNARE-dependent membrane fusion requires an active mechanism that transduces force to membrane anchors.McNew JA, Weber T, Parlati F, Johnston RJ, Melia TJ, Söllner TH, Rothman JE.McNew JA, et al.J Cell Biol. 2000 Jul 10;150(1):105-17. doi: 10.1083/jcb.150.1.105.J Cell Biol. 2000.PMID:10893260Free PMC article.
- Role of SNAREs in membrane fusion.Jena BP.Jena BP.Adv Exp Med Biol. 2011;713:13-32. doi: 10.1007/978-94-007-0763-4_3.Adv Exp Med Biol. 2011.PMID:21432012Review.
- Molecular structures of proteins involved in vesicle fusion.Ybe JA, Wakeham DE, Brodsky FM, Hwang PK.Ybe JA, et al.Traffic. 2000 Jun;1(6):474-9. doi: 10.1034/j.1600-0854.2000.010605.x.Traffic. 2000.PMID:11208133Review.
Cited by
- Biomimetic tethered lipid membranes designed for membrane-protein interaction studies.Rossi C, Chopineau J.Rossi C, et al.Eur Biophys J. 2007 Nov;36(8):955-65. doi: 10.1007/s00249-007-0202-y. Epub 2007 Jul 5.Eur Biophys J. 2007.PMID:17611752Review.
- A molecular mechanism for calcium-mediated synaptotagmin-triggered exocytosis.Kiessling V, Kreutzberger AJB, Liang B, Nyenhuis SB, Seelheim P, Castle JD, Cafiso DS, Tamm LK.Kiessling V, et al.Nat Struct Mol Biol. 2018 Oct;25(10):911-917. doi: 10.1038/s41594-018-0130-9. Epub 2018 Oct 5.Nat Struct Mol Biol. 2018.PMID:30291360Free PMC article.
- Dimensions and Interactions of Large T-Cell Surface Proteins.Junghans V, Santos AM, Lui Y, Davis SJ, Jönsson P.Junghans V, et al.Front Immunol. 2018 Sep 27;9:2215. doi: 10.3389/fimmu.2018.02215. eCollection 2018.Front Immunol. 2018.PMID:30319654Free PMC article.Review.
- SNARE Proteins in Synaptic Vesicle Fusion.Palfreyman MT, West SE, Jorgensen EM.Palfreyman MT, et al.Adv Neurobiol. 2023;33:63-118. doi: 10.1007/978-3-031-34229-5_4.Adv Neurobiol. 2023.PMID:37615864
- Molecular height measurement by cell surface optical profilometry (CSOP).Son S, Takatori SC, Belardi B, Podolski M, Bakalar MH, Fletcher DA.Son S, et al.Proc Natl Acad Sci U S A. 2020 Jun 23;117(25):14209-14219. doi: 10.1073/pnas.1922626117. Epub 2020 Jun 8.Proc Natl Acad Sci U S A. 2020.PMID:32513731Free PMC article.
References
- Boxer, S. G. 2000. Molecular transport and organization in supported lipid membranes. Curr. Opin. Chem. Biol. 4:704–709. - PubMed
- Braun, D., and P. Fromherz. 1997. Fluorescence interference-contrast microscopy of cell adhesion on oxidized silicon. Appl. Phys. A. 65:341–348.
- Braun, D., and P. Fromherz. 1998. Fluorescence interferometry of neuronal cell adhesion on microstructured silicon. Phys. Rev. Let. 81:5241–5244.
- de Gennes, P. G. 1987. Polymers at an interface: a simplified view. Adv. Colloid Interface Sci. 27:189–209.
Publication types
MeSH terms
Substances
Related information
Grants and funding
LinkOut - more resources
Full Text Sources