Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

American Chemical Society full text link American Chemical Society
Full text links

Actions

Share

.2002 Dec 31;41(52):15854-60.
doi: 10.1021/bi026095u.

Physical and functional interaction between receptor-like protein tyrosine phosphatase PCP-2 and beta-catenin

Affiliations

Physical and functional interaction between receptor-like protein tyrosine phosphatase PCP-2 and beta-catenin

He-Xin Yan et al. Biochemistry..

Abstract

We have previously identified a human receptor protein tyrosine phosphatase of the MAM domain family, termed PCP-2, in human pancreatic adenocarcinoma cells and found that this protein was colocalized with beta-catenin and E-cadherin at cell junctions [Wang, H.-Y., et al. (1996) Oncogene 12, 2555-2562]. Its intracellular part consists of two tandem phosphatase domains and a relatively large juxtamembrane region that is homologous to the conserved intracellular domain of cadherins, suggesting a role in the regulation of cell adhesion. This study reports that PCP-2 was endogenously expressed at the cell surface and upregulated with increased cell density. An in vivo binding assay revealed that PCP-2 could directly interact with beta-catenin through a region in the juxtamembrane domain. Tyrosine phosphorylation of beta-catenin by EGF or active SrcY527F did not disrupt the formation of the PCP-2-beta-catenin complex, while PCP-2 in this complex could cause a significant reduction in the phosphorylation level in beta-catenin. Finally, we showed that PCP-2 was a negative regulator for cell migration. In conclusion, interaction of PCP-2 with its substrate beta-catenin is involved in the process of cell-cell contact.

PubMed Disclaimer

Similar articles

See all similar articles

Cited by

See all "Cited by" articles

Publication types

MeSH terms

Substances

Related information

LinkOut - more resources

Full text links
American Chemical Society full text link American Chemical Society
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp