Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Nature Publishing Group full text link Nature Publishing Group
Full text links

Actions

.2002 Nov;27(5):699-711.
doi: 10.1016/S0893-133X(02)00346-9.

Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: a potential mechanism for efficacy in attention deficit/hyperactivity disorder

Affiliations
Free article

Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: a potential mechanism for efficacy in attention deficit/hyperactivity disorder

Frank P Bymaster et al. Neuropsychopharmacology.2002 Nov.
Free article

Abstract

The selective norepinephrine (NE) transporter inhibitor atomoxetine (formerly called tomoxetine or LY139603) has been shown to alleviate symptoms in Attention Deficit/Hyperactivity Disorder (ADHD). We investigated the mechanism of action of atomoxetine in ADHD by evaluating the interaction of atomoxetine with monoamine transporters, the effects on extracellular levels of monoamines, and the expression of the neuronal activity marker Fos in brain regions. Atomoxetine inhibited binding of radioligands to clonal cell lines transfected with human NE, serotonin (5-HT) and dopamine (DA) transporters with dissociation constants (K(i)) values of 5, 77 and 1451 nM, respectively, demonstrating selectivity for NE transporters. In microdialysis studies, atomoxetine increased extracellular (EX) levels of NE in prefrontal cortex (PFC) 3-fold, but did not alter 5-HT(EX) levels. Atomoxetine also increased DA(EX) concentrations in PFC 3-fold, but did not alter DA(EX) in striatum or nucleus accumbens. In contrast, the psychostimulant methylphenidate, which is used in ADHD therapy, increased NE(EX) and DA(EX) equally in PFC, but also increased DA(EX) in the striatum and nucleus accumbens to the same level. The expression of the neuronal activity marker Fos was increased 3.7-fold in PFC by atomoxetine administration, but was not increased in the striatum or nucleus accumbens, consistent with the regional distribution of increased DA(EX). We hypothesize that the atomoxetine-induced increase of catecholamines in PFC, a region involved in attention and memory, mediates the therapeutic effects of atomoxetine in ADHD. In contrast to methylphenidate, atomoxetine did not increase DA in striatum or nucleus accumbens, suggesting it would not have motoric or drug abuse liabilities.

PubMed Disclaimer

MeSH terms

Substances

LinkOut - more resources

Full text links
Nature Publishing Group full text link Nature Publishing Group
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2026 Movatter.jp